1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
3 years ago
12

1 A long, uninsulated steam line with a diameter of 100 mm and a surface emissivity of 0.8 transports steam at 150°C and is expo

sed to atmospheric air and large surroundings at an equivalent temperature of 20°C. (a) Calculate the rate of heat loss per unit length for a calm day. (b) Calculate the rate of heat loss on a breezy day when the wind speed is 8 m/s. (c) For the conditions of part (a), calculate the rate of heat loss with a 20-mm-thick layer of insulation (k = 0.08 W/m ⋅ K). Would the heat loss change significantly with an appreciable wind speed?
Engineering
1 answer:
Alexeev081 [22]3 years ago
6 0

Answer:

a) q' = 351.22 W/m

b) q'_total = 1845.56 W / m

c) q'_loss = 254.12 W/m

Explanation:

Given:-

- The diameter of the steam line, d = 100 mm

- The surface emissivity of steam line, ε = 0.8

- The temperature of the steam, Th = 150°C

- The ambient air temperature, T∞ = 20°C

Find:-

(a) Calculate the rate of heat loss per unit length for a calm day.

Solution:-

- Assuming a calm day the heat loss per unit length from the steam line ( q ' ) is only due to the net radiation of the heat from the steam line to the surroundings.

- We will assume that the thickness "t" of the pipe is significantly small and temperature gradients in the wall thickness are negligible. Hence, the temperature of the outside surface Ts = Th = 150°C.

- The net heat loss per unit length due to radiation is given by:

                     q' = ε*σ*( π*d )* [ Ts^4 - T∞^4 ]      

Where,

          σ: the stefan boltzmann constant = 5.6703 10-8 (W/m2K4)

          Ts: The absolute pipe surface temperature = 150 + 273 = 423 K

          T∞:The absolute ambient air temperature = 20 + 273 = 293 K

Therefore,

                    q' = 0.8*(5.6703 10-8)*( π*0.1 )* [ 423^4 - 293^4 ]    

                    q' = (1.4251*10^-8)* [ 24645536240 ]    

                    q' = 351.22 W / m   ... Answer

Find:-

(b) Calculate the rate of heat loss on a breezy day when the wind speed is 8 m/s.

Solution:-

- We have an added heat loss due to the convection current of air with free stream velocity of U∞ = 8 m/s.

- We will first evaluate the following properties of air at T∞ = 20°C = 293 K

                  Kinematic viscosity ( v ) = 1.5111*10^-5 m^2/s

                  Thermal conductivity ( k ) = 0.025596

                  Prandtl number ( Pr ) = 0.71559

- Determine the flow conditions by evaluating the Reynold's number:

                 Re = U∞*d / v

                      = ( 8 ) * ( 0.1 ) / ( 1.5111*10^-5 )

                      = 52941.56574   ... ( Turbulent conditions )

- We will use Churchill - Bernstein equation to determine the surface averaged Nusselt number ( Nu_D ):

           Nu_D = 0.3 + \frac{0.62*Re_D^\frac{1}{2}*Pr^\frac{1}{3}  }{[ 1 + (\frac{0.4}{Pr})^\frac{2}{3} ]^\frac{1}{4}  }*[ 1 + (\frac{Re_D}{282,000})^\frac{5}{8} ]^\frac{4}{5}    \\\\Nu_D = 0.3 + \frac{0.62*(52941.56574)^\frac{1}{2}*(0.71559)^\frac{1}{3}  }{[ 1 + (\frac{0.4}{0.71559})^\frac{2}{3} ]^\frac{1}{4}  }*[ 1 + (\frac{52941.56574}{282,000})^\frac{5}{8} ]^\frac{4}{5}  \\\\

           Nu_D = 0.3 + \frac{127.59828 }{ 1.13824  }*1.27251  = 142.95013

- The averaged heat transfer coefficient ( h ) for the flow of air would be:

            h = Nu_D*\frac{k}{d} \\\\h = 143*\frac{0.025596}{0.1} \\\\h = 36.58951 W/m^2K

- The heat loss per unit length due to convection heat transfer is given by:

           q'_convec = h*( π*d )* [ Ts - T∞ ]

           q'_convec = 36.58951*( π*0.1 )* [ 150 - 20 ]

           q'_convec = 11.49493* 130

           q'_convec = 1494.3409 W / m

- The total heat loss per unit length ( q'_total ) owes to both radiation heat loss calculated in part a and convection heat loss ( q_convec ):

           q'_total = q_a + q_convec

           q'_total = 351.22 + 1494.34009

           q'_total = 1845.56 W / m  ... Answer

Find:-

For the conditions of part (a), calculate the rate of heat loss with a 20-mm-thick layer of insulation (k = 0.08 W/m ⋅ K)

Solution:-

- To reduce the heat loss from steam line an insulation is wrapped around the line which contains a proportion of lost heat within.

- A material with thermal conductivity ( km = 0.08 W/m.K of thickness t = 20 mm ) was wrapped along the steam line.

- The heat loss through the lamination would be due to conduction " q'_t " and radiation " q_rad":

             q'_t = 2*\pi*k \frac{T_h - T_o}{Ln ( \frac{r_2}{r_1} )}  

             q' = ε*σ*( π*( d + 2t) )* [ Ts^4 - T∞^4 ]

             

Where,

             T_o = T∞ = 20°C

            T_s = Film temperature = ( Th + T∞ ) / 2 = ( 150 + 20 ) / 2 = 85°C

             r_2 = d/2 + t = 0.1 / 2 + 0.02 = 0.07 m

             r_1 = d/2 = 0.1 / 2 = 0.05 m

- The heat loss per unit length would be:

            q'_loss = q'_rad - q'_cond

- Compute the individual heat losses:

            q'_t = 2*\pi*0.08 \frac{150 - 85}{Ln ( \frac{0.07}{0.05} )}\\\\q'_t = 0.50265* \frac{65}{0.33647}\\\\q'_t = 97.10 W/m

Therefore,

             q'_loss = 351.22 - 97.10

            q'_loss = 254.12 W / m   .... Answer

- If the wind speed is appreciable the heat loss ( q'_loss ) would increase and the insulation would become ineffective.

You might be interested in
Una empresa realizó en el ejercicio de compras al contado por valor
Tanzania [10]

Answer:

englishhhh pleasee

Explanation:

we dont understand sorry....

8 0
3 years ago
g A pedometer treats walking 2,000 steps as walking 1 mile. Write a program whose input is the number of steps, and whose output
Nataly [62]

Answer:

# Program is written in Python Programming Language

# Comments are used for explanatory purpose

# Program starts here

# Accept input

Steps = input (Number of Steps: ")

# Calculate distance

distance = float(2000) * float(steps)

#Print Formatted Result

print('%0.2f' % distance)

# End of Program

.--------

The above program converts number of steps to miles.

At line 5, the number of steps is inputted and stored in variable named Steps.

At line 6, the number of miles is calculated by multiplying 2000 by the content of variable Steps

The result is printed at line 8

8 0
2 years ago
Read 2 more answers
A device that transforms electrical energy to mechanical:
xxTIMURxx [149]

Answer:

electric motor

*** brainly if possible

Explanation:

3 0
2 years ago
A good rule of thumb in hazardous conditions is to _____.
Aloiza [94]

Answer:

C. Have your hazard lights on

Explanation:

Speeding up will cause an accident

Counter steering is not easy to do

Slowing down my result in you being rear ended

5 0
3 years ago
Read 2 more answers
A bridge hand consists of 13 cards. One way to evaluate a hand is to calculate the total high point count (HPC) where an ace is
son4ous [18]

Answer: Let us use the pickled file - DeckOfCardsList.dat.

Explanation: So that our possible outcome becomes

7♥, A♦, Q♠, 4♣, 8♠, 8♥, K♠, 2♦, 10♦, 9♦, K♥, Q♦, Q♣

HPC (High Point Count) = 16  

4 0
2 years ago
Other questions:
  • What's the monomer? Show the structure.
    10·1 answer
  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 560°C and the turbine exit pressur
    13·1 answer
  • Question 54 (1 point)
    11·2 answers
  • Tests reveal that a normal driver takes about 0.75 s before he orshecan react to a situation to avoid a collision. It takes abou
    11·1 answer
  • The diameter of an extruder barrel = 85 mm and its length = 2.00 m. The screw rotates at 55 rev/min, its channel depth = 8.0 mm,
    5·1 answer
  • A Gaussian random voltage X volts is input to a half-wave rectifier and the output voltage is Y = Xu (X) Volts were u (x) is the
    9·1 answer
  • Where you live might affect how often you change your cabin air filter.<br> True<br> False
    8·1 answer
  • Need help with these 3 ez questions pls help me.
    6·1 answer
  • A step-up transformer has 20 primary turns and 400 secondary turns. If the primary current is 30 A, what is the secondary curren
    15·1 answer
  • How does sea navigation work?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!