Answer:
The temperature T= 648.07k
Explanation:
T1=input temperature of the first heat engine =1400k
T=output temperature of the first heat engine and input temperature of the second heat engine= unknown
T3=output temperature of the second heat engine=300k
but carnot efficiency of heat engine =
where Th =temperature at which the heat enters the engine
Tl is the temperature of the environment
since both engines have the same thermal capacities <em>
</em> therefore 
We have now that

multiplying through by T

multiplying through by 300
-
The temperature T= 648.07k
The displacement ∆S of the particle during the interval from t = 2sec to 4sec is; 210 sec
<h3>How to find the displacement?</h3>
We are given the velocity equation as;
s' = 40 - 3t²
Thus, the speed equation will be gotten by integration of the velocity equation to get;
s = ∫40 - 3t²
s = 40t - ¹/₂t³
Thus, the displacement between times of t = 2 sec and t = 4 sec is;
∆S = [40(4) - ¹/₂(4)³] - [40(2) - ¹/₂(2)³]
∆S = 210 m
Read more about Displacement at; brainly.com/question/4931057
#SPJ1
Answer:
Aggressive behavior
Explanation:
Alcohol consumption tends to cause more Aggressive behavior.
The consumption of alcohol plays a more role in our culture but drinking of too much alcohol can cause drowsiness, vomiting, Upset stomach, slurred speech, heart damage, infertile, numbness lung infections, and many more. Also too much alcohol can cause violence, anger and so on in the society.
The KVA rating of the step down transformer at the given power factor would be 62.5 kVA.
<h3>
What is power factor of a transformer?</h3>
Power factor (PF) is the ratio of working power, measured in kilowatts (kW), to apparent power, measured in kilovolt amperes (kVA).
PF = working power / apparent power
PF = kW/kVA
kVA = kW/PF
kVA = 50 kW/0.8
kVA = 62.5 kVA
Thus, the KVA rating of the step down transformer at the given power factor would be 62.5 kVA.
Learn more about power factor here: brainly.com/question/7956945
#SPJ1
Answer:
the width of the turning roadway = 15 ft
Explanation:
Given that:
A ramp from an expressway with a design speed(u) = 30 mi/h connects with a local road
Using 0.08 for superelevation(e)
The minimum radius of the curve on the road can be determined by using the expression:

where;
R= radius
= coefficient of friction
From the tables of coefficient of friction for a design speed at 30 mi/h ;
= 0.20
So;



R = 214.29 ft
R ≅ 215 ft
However; given that :
The turning roadway has stabilized shoulders on both sides and will provide for a onelane, one-way operation with no provision for passing a stalled vehicle.
From the tables of "Design widths of pavement for turning roads"
For a One-way operation with no provision for passing a stalled vehicle; this criteria falls under Case 1 operation
Similarly; we are told that the design vehicle is a single-unit truck; so therefore , it falls under traffic condition B.
As such in Case 1 operation that falls under traffic condition B in accordance with the Design widths of pavement for turning roads;
If the radius = 215 ft; the value for the width of the turning roadway for this conditions = 15ft
Hence; the width of the turning roadway = 15 ft