1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikdorinn [45]
3 years ago
14

A 10-mm steel drill rod was heat-treated and ground. The measured hardness was found to be 290 Brinell. Estimate the endurance s

trength, Se, in MPa if the rod is used in rotating bending.
Engineering
1 answer:
grandymaker [24]3 years ago
8 0

Answer:

the endurance strength  S_e = 421.24  MPa

Explanation:

From the given information; The objective is to estimate the endurance strength, Se, in MPa .

To do that; let's for see the expression that shows the relationship between the ultimate tensile strength and Brinell hardness number .

It is expressed as:

200 \leq H_B \leq 450

S_{ut} = 3.41 H_B

where;

H_B = Brinell hardness number

S_{ut} =  Ultimate tensile strength

From ;

S_{ut} = 3.41 H_B; replace 290 for H_B ; we have

S_{ut} = 3.41 (290)

S_{ut} = 988.9 MPa

We can see that the derived value for the ultimate tensile strength when the Brinell harness number = 290 is less than 1400 MPa ( i.e it is 988.9 MPa)

So; we can say

S_{ut} < 1400

The Endurance limit can be represented by the formula:

S_e ' = 0.5 S_{ut}

S_e ' = 0.5 (988.9)

S_e ' = 494.45 MPa

Using Table 6.2 for parameter for Marin Surface modification factor. The value for a and b are derived; which are :

a = 1.58

b =  -0.085

The value of the surface factor can be calculate by using the equation

k_a = aS^b_{ut}

K_a = 1.58 (988.9)^{-0.085

K_a = 0.8792

The formula that is used to determine the value of  k_b for the rotating shaft of size factor d = 10 mm is as follows:

k_b = 1.24d^{-0.107}

k_b = 1.24(10)^{-0.107}

k_b = 0.969

Finally; the the endurance strength, Se, in MPa if the rod is used in rotating bending is determined by using the expression;

S_e =k_ak_b S' _e

S_e= 0.8792×0.969×494.45

S_e = 421.24  MPa

Thus; the endurance strength  S_e = 421.24  MPa

You might be interested in
What does the word “robot” mean? A.Clone B. Athlete C. Servant D. Actor
hram777 [196]

Answer:

a. clone

Explanation:

4 0
3 years ago
A well insulated rigid tank contains 4 kg of argon gas at 450 kPa and 30 C. A valve is opened, allowing the argon to escape unti
natima [27]

Answer:

Final mass of Argon=  2.46 kg

Explanation:

Initial mass of Argon gas ( M1 ) = 4 kg

P1 = 450 kPa

T1 = 30°C = 303 K

P2 = 200 kPa

k ( specific heat ratio of Argon ) = 1.667

assuming a reversible adiabatic process

<u>Calculate the value of the M2 </u>

Applying ideal gas equation ( PV = mRT )

P₁V / P₂V = m₁ RT₁ / m₂ RT₂

hence : m2 = P₂T₁ / P₁T₂ * m₁

                   = (200 * 303 ) / (450 * 219 ) * 4

                   = 2.46 kg

<em>Note: Calculation for T2 is attached below</em>

5 0
3 years ago
3. A 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10
Natali [406]

Answer:

14.52 minutes

<u>OR</u>

14 minutes and 31 seconds

Explanation:

Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.

Specific heat at constant volume at 27°C = 0.718 kJ/kg*K

Initial temperature of room (in kelvin) = 283.15 K

Final temperature (required) of room = 293.15 K

Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg

Heat required at constant volume: 0.718 * (change in temp) * (mass of air)

Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ

Time taken for temperature rise: heat required / (rate of heat change)

Where rate of heat change = 10000 - 5000 = 5000 kJ/hr

Time taken = 1210.26 / 5000 = 0.24205 hours

Converted to minutes = 0.24205 * 60 = 14.52 minutes

4 0
4 years ago
At steady state, a reversible refrigeration cycle discharges energy at the rate QH to a hot reservoir at temperature TH, while r
ludmilkaskok [199]

Answer:

a) COP_{R} = 25.014, b) T_{H} = 327.78\,K\,(54.63\,^{\textdegree}C)

Explanation:

a) The coefficient of performance of a reversible refrigeration cycle is:

COP_{R} = \frac{T_{L}}{T_{H}-T_{L}}

Temperatures must be written on absolute scales (Kelvin for SI units, Rankine for Imperial units)

COP_{R} = \frac{275.15\,K}{286.15\,K-275.15\,K}

COP_{R} = 25.014

b) The respective coefficient of performance is determined:

COP_{R} = \frac{Q_{L}}{Q_{H}-Q_{L}}

COP_{R} = \frac{8.75\,kW}{10.5\,kW-8.75\,kW}

COP_{R} = 5

But:

COP_{R} = \frac{T_{L}}{T_{H}-T_{L}}

The temperature at hot reservoir is found with some algebraic help:

COP_{R} \cdot (T_{H}-T_{L})=T_{L}

T_{H}-T_{L} = \frac{T_{L}}{COP_{R}}

T_{H} = T_{L}\cdot \left(1+\frac{1}{COP_{R}}  \right)

T_{H} = 273.15\,K \cdot \left(1+\frac{1}{5}  \right)

T_{H} = 327.78\,K\,(54.63\,^{\textdegree}C)

8 0
3 years ago
Read 2 more answers
A 4-kW electric heater runs for 2 hours to raise the room temperature to the desired level. Determine the amount of electric ene
Anna35 [415]

Answer:

Q' = 8 KW.h

Q'=28800 KJ

Explanation:

Given that

Heat Q= 4 KW

time ,t = 2 hours

The amount of energy used in KWh given as

Q ' = Q x t

Q' = 4 x  2 KW.h

Q' = 8 KW.h

We know that

1 h = 60 min = 60 x 60 s  = 3600 s

We know that W  = 1 J/s

The amount of energy used in KJ given as

Q' = 8 x 3600 = 28800 KJ

Therefore

Q' = 8 KW.h

Q'=28800 KJ

6 0
3 years ago
Other questions:
  • a. A crude oil pipe’s radius is reduced by 5%. What is the corresponding percentage change in the pressure drop per unit length?
    8·1 answer
  • The ratio of the weight of a substance to the weight of equal volume of water is known as a) Density b) specific gravity c) spec
    8·1 answer
  • Design a PI controller to improve the steady-state error. The system should operate with a damping ratio of 0.8. Compute the ove
    10·1 answer
  • g A pump is required to deliver 100 gpm at a head of 100 ft, but the pump rated capacity is 150 gpm at a head of 100 ft. If the
    9·1 answer
  • Air at 2.5 bar, 400 K is extracted from a main jet engine compressor for cabin cooling. The extracted air enters a heat exchange
    14·2 answers
  • A lab technician is ordered to take a sample of your blood. As she inserts the needle, she says, "My, you have tough skin!" What
    14·1 answer
  • Significant figures are an indicator of accuracy. a) True b) False
    8·1 answer
  • Hỗ trợ mình với được không các bạn
    13·1 answer
  • Which of the following is an example of a social need?
    5·1 answer
  • 3. It's
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!