Explanation:
if the elevator is moving upward with the constant speed the spring scale will read 18 N which is the mass of each of the two blocks attached by separate springs to the scale at opposite ends.
Answer:
29.4855 grams of chlorophyll
Explanation:
From Raoult's law
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 457.45 mmHg ÷ 463.57 mmHg = 0.987
Mass of solvent (diethyl ether) = 187.4 g
MW of diethyl ether (C2H5OC2H5) = 74 g/mol
Number of moles of solvent = mass/MW = 187.4/74 = 2.532 mol
Let the moles of solute (chlorophyll) be y
Total moles of solution = moles of solute + moles of solvent = (y + 2.532) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.987 = 2.532/(y + 2.532)
y + 2.532 = 2.532/0.987
y + 2.532 = 2.565
y = 2.565 - 2.532 = 0.033
Moles of solute (chlorophyll) = 0.033 mol
Mass of chlorophyll = moles of chlorophyll × MW = 0.033 × 893.5 = 29.4855 grams
Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
An ... (Base ) .... is a compound that turns red litmus paper blue and is often found in soaps and detergents.
As a wave moves through a medium, particles are displaced and return to their normal position after the wave passes.
Explanation:
A wave is a traveling disturbance that carries energy from one location to another. All waves move in straight lines outward and away from the source of a disturbance. Like the radiating circular ripples, the waves of water carry energy away from where a rock was dropped into the pond.
Waves can move as a single pulse or as a continuous series of waves, carrying energy away from its source. A pulse is a single disturbance, wave, or ripple that moves outward from the point of disturbance. A train of waves are many waves emitted over and over again from a single source.
As waves travel through matter, they will temporarily displace the molecules or particles in matter up-and-down or side-to-side. Waves move the energy but they do not carry the matter with them longitudinally as they move through matter. Once the disturbance passes, the medium will return to its original state or position.
Therefore, as the waves move through a medium, particles are displaced and return to their normal position after the wave passes.