Answer:
D. Meters/Seconds
Explanation:
The time period of a wave is measured in seconds.
A typical wave involves both time and distance. Consider a sound wave, which is basically a periodic modulation of the local air pressure. We "hear" the sound because our ears respond to the variations of pressure.
The most common metric of a sound wave is frequency. This is the rate at which the change in pressure occurs, and is measured in cycles per second, formally known as "hertz". The period is the inverse of frequency andl has the units of seconds per cycle, commonly stated simply as seconds.
784 Newtons or 176.37 lbs
Answer:
1.It's the world's most famous equation, but what does it really mean? "Energy equals mass times the speed of light squared." On the most basic level, the equation says that energy and mass (matter) are interchangeable; they are different forms of the same thing.
2.The process releases energy because the total mass of the resulting single nucleus is less than the mass of the two original nuclei.
3.In nuclear reactions, mass is never conserved—some mass is exchanged for energy and energy for mass. Nuclear reactions take place in an atom's nucleus. In a spontaneous nuclear reaction, such as radioactive decay, mass is "lost" and appears as energy in the form of particles or gamma rays.
4.In a nuclear reaction, mass decreases and energy increases. The sum of mass and energy is always conserved in a nuclear reaction.
5.The process releases energy because the total mass of the resulting single nucleus is less than the mass of the two original nuclei.
Explanation:
hope it helps
Because the frictional force between the orange skin peel is great enough when you are walking for it to be carried on the tray, along with the gravitational force downwards onto the tray. When you stop, the force that you exerted moving forward it the same as on the tray and on the orange. So when you stop, the force is still on the orange as the same velocity as your we’re traveling, while the tray and you stop.
Answer:
D) True. This is what creates the body weight
Explanation:
Let's write Newton's second law for this case. For inclined planes the reference system takes one axis parallel to the plane (x axis) and the other perpendicular to the plane (y axis)
X axis
Wx -fr = ma
Y Axis
N - Wy = 0
With trigonometry we can find the components of weight
sin θ = Wₓ / W
cos θ =
/ W
Wₓ = W sin θ
= W cos θ
W sin θ - fr = ma
From this expression as it indicates that the body is descending the force greater is the gravity that create the weight of the body
Let's examine the answers
A False This force does not apply because it is not a spring
B) False. It is balanced at all times with the component (Wy) of the weight
C) False. For there to be a rope, if it exists you should be less than the weight component for the block to lower
D) True. This is what creates the body weight
E) False. The cutting force occurs for force applied at a single point and gravity is applied at all points