Answer:
The amount of energy carried by a wave is related to the amplitude of the wave
Explanation:
A high energy wave is characterized by a high amplitude; a low energy wave is characterized by a low amplitude. The energy imparted to a pulse will only affect the amplitude of that pulse.
Hope this helped!!!
Answer:
The lenses with different focal length are four.
Explanation:
Given that,
Radius of curvature R₁= 4
Radius of curvature R₂ = 8
We know ,
Refractive index of glass = 1.6
When, R₁= 4, R₂ = 8
We need to calculate the focal length of the lens
Using formula of focal length

Put the value into the formula



When , R₁= -4, R₂ = 8
Put the value into the formula



When , R₁= 4, R₂ = -8
Put the value into the formula



When , R₁= -4, R₂ = -8
Put the value into the formula



Hence, The lenses with different focal length are four.
Answer:
The pressure is constant, and it is P = 150kpa.
the specific volumes are:
initial = 0.062 m^3/kg
final = 0.027 m^3/kg.
Then, the specific work can be written as:

The fact that the work is negative, means that we need to apply work to the air in order to compress it.
Now, to write it in more common units we have that:
1 kPa*m^3 = 1000J.
-5.25 kPa*m^3/kg = -5250 J/kg.
That would be a the first law of newton's laws of motion because it stops from an external force
By definition, the potential energy is:
U = qV
Where,
q: load
V: voltage.
Then, the kinetic energy is:
K = mv ^ 2/2
Where,
m: mass
v: speed.
As the power energy is converted into kinetic energy, we have then:
U = K
Equating equations:
qV = mv ^ 2/2
From here, we clear the speed:
v = root (2qV / m)
Substituting values we have:
v = root ((2 * (1.60218 × 10 ^ -19) * 3600) /9.10939×10^-31))
v = 3.56 × 10 ^ 7 m / s
Then, the centripetal force is:
Fc = Fm
mv ^ 2 / r = qvB
By clearing the magnetic field we have:
B = mv / qr
Substituting values:
B = (9.10939 × 10 ^ -31) * (3.56 × 10 ^ 7) / (1.60218 × 10 ^ -19) * 0.059
B = 3.43 × 10 ^ -3 T
Answer:
A magnetic field that must be experienced by the electron is:
B = 3.43 × 10 ^ -3 T