Answer: independent variable: Size of the feather.
Explanation:
In an experiment, the manipulated/independent variable is, as the name implies, the variable that the scientist can control.
In this case, the scientist has only one variable that he can control at will, and this is the size of the feather (he can choose which feather he uses for the experiment)
So the manipulated variable will be the size of the feather.
And the dependent variable is the one that "answers" to the changes in the manipulated variable.
In this case, will be the time that it takes to the feather to fall to the ground.
It is determined by the nature of the green light. Because lasers create light at almost a single frequency, green laser light would appear as a thin line of pure green. Other sources of "green" light emit light at a variety of frequencies, including yellow and blue, resulting in a strong green band in the center that fades into blue-green and yellow-green at the borders.
For example, here’s a graph of the spectrum of a green LED, showing the color range: Attachment #1
and here’s a graph of the transmission spectra of several standard photographic filters, including green: Attachment #2
Learn more about the color spectrum:
#SPJ2
Answer:
the ratio (N/V)Venus / (N/V)Earth = 39 : 1
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
Current in the hair dryer will be equal to 15 A
Explanation:
We have given that household is operated at 110 volt
So potential difference V =110 volt
Power drawn by hairdryer is P = 1650 watt
We have to find the current in the hair dryer
We know that power is given as P = VI, here V is potential difference and I is current
So 
I = 15 A
So current in the hair dryer will be equal to 15 A
Required Heat = Q
Q = Mass * specific heat of water * change in temp.
Q = 5g * 1g/cal*degC * 20degC
Q = 100 cal of heat is required
To convert calories to Joules,
1 cal = 4.184 Joules
100cal = 418.4 J of heat is needed