At a point near the rim of the disk, it will have a<span> non-zero radial acceleration and a zero tangential acceleration. Also known as centripetal acceleration, radial acceleration takes place along the radius of the disk. On the other hand, the tangential acceleration is along the path of disk's motion.</span>
Answer:
0.022kg/s
Explanation:
We are given that
Mass of boiled egg=46 g=

Constant force=F=25.6 N/m
Initial displacement=
Final displacement=
Time=t=4.55 s
Damping force=
We have to find the magnitude of damping constant b.
We know that the displacement of the oscillator under damping motion is given by

For maximum displacement 
Therefore , 
Substitute the values




Substitute the values




Hence,the magnitude of damping constant b=0.022kg/s
I think the correct answer from the choices listed above is option B. When calculating the power bill, power companies use kilowatt-hours. This unit is a derived unit of energy equal to 3.6 MJ. If energy is being transmitted or used at a constant rate (power) over a period of time, the total energy in kilowatt-hours is the product of the power in kilowatts and the time.
You knew that this question is ridiculously easy. So, just to
make it harder, you decided not to let us see the picture, so
that we could not "examine the circuit".
The description is talking about a parallel circuit. The other
kind is a series circuit, and that one has no forks in the road.
So basically you, then, finally, you