Answer:
Put water at room temperature into a vacuum chamber and begin removing the air. Eventually, the boiling temperature will fall below the water temperature and boiling will begin without heating. Or if you want to be easy but messy, add dry ice to a bowl of water and watch how the water starts to boil.
Answer:
Q = 2.95*10^5 kJ
Explanation:
In order to calculate the energy required to melt the cooper, you first calculate the energy required to reach the boiling temperature. You use the following formula:
(1)
m: mass of cooper = 540 kg
c: specific heat of cooper = 390 J/kg°C
Tb: boiling temperature of cooper = 1080°C
T1: initial temperature of cooper = 20°C
You replace the values of the parameters in the equation (1):

Next, you calculate the energy required to melt the cooper by using the following formula:
(2)
Lf: melting constant of cooper = 134000J/kg

Finally, the total amount of energy required to melt the cooper from a temperature of 20°C is the sum of Q1 and Q2:

The total energy required is 2.95*10^5 kJ
Answer: 
Explanation:
We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity
of the planet P1 with a period
:
(1)
Where:
is the velocity of planet P1
is the radius of the orbit of planet P1
Finding
:
(2)
(3)
(4)
On the other hand, we know the gravitational force
between the star S with mass
and the planet P1 with mass
is:
(5)
Where
is the Gravitational Constant and its value is 
In addition, the centripetal force
exerted on the planet is:
(6)
Assuming this system is in equilibrium:
(7)
Substituting (5) and (6) in (7):
(8)
Finding
:
(9)
(10)
Finally:
(11) This is the mass of the star S
Resistivity of nichrome is high.