Since
Force (weight) = mass x acceleration (gravity)
To determine acceleration, the formula will be:
Acceleration = Force / mass
Given are:
F = 10 N
M = 2kg
A = ?
Solution:
1. A = F/M
2. A = 10 kg*m/s2 / 2kg
3. A = 5 m/s2
Answer:
A light emitting diode (a semiconductor diode which glows when voltage is applied.
This is a speed/time graph.
The slope of the graph at each point is the time rate of change of speed
at that point, and THAT's the definition of the magnitude of acceleration.
The slope of the curve is zero at both ' A ' and ' B ', so acceleration is
zero at both of those points.
That seems to be exactly what choice-c says.
Answer:
q = 7.542 x 10⁻⁷ C = 754.2 nC
Explanation:
The Coulomb's Law gives the magnitude of the force of attraction or repulsion between two charges:
F = kq₁q₂/r²
where,
F = Force of attraction or repulsion = 0.2 N
k = Coulomb's Constant = 9 x 10⁹ N m²/C²
r = distance between charges = 16 cm = 0.16 m
q₁ = magnitude of 1st charge
q₂ = magnitude of 2nd charge
Since, both charges are said to be equal here.
q₁ = q₂ = q
Therefore,
0.2 N = (9 x 10⁹ N m²/C²)q²/(0.16 m)²
(0.2 N)(0.16 m)²/(9 x 10⁹ N m²/C²) = q²
q = √(5.88 x 10⁻¹³ C²)
<u>q = 7.542 x 10⁻⁷ C = 754.2 nC</u>
Answer:
b. amplitude
Explanation:
An electromagnetic waveconsists of electrical oscillations and magnetic fields. The frequency of the wave is directly proportional to its energy and its speed and inversely proportional to its wavelength. Therefore, with the only magnitude with which it has no relation is with its amplitude.