Given Information:
Diameter of spherical cell = 0.040 mm
thickness = L = 9 nm
Resistivity = ρ = 3.6×10⁷ Ω⋅m
Dielectric constant = k = 9.0
Required Information:
time constant = τ = ?
Answer:
time constant = 2.87×10⁻³ seconds
Explanation:
The time constant is given by
τ = RC
Where R is the resistance and C is the capacitance.
We know that resistivity of of any material is given by
ρ = RA/L
R = ρL/A
Where area of spherical cell is given by
A = 4πr²
A = 4π(d/2)²
A = 4π(0.040×10⁻³/2)²
A = 5.026×10⁻⁹ m²
The resistance becomes
R = (3.6×10⁷*9×10⁻⁹)/5.026×10⁻⁹
R = 6.45×10⁷ Ω
The capacitance of the cell membrane is given by
C = kεoA/L
Where k = 9 is the dielectric constant and εo = 8.854×10⁻¹² F/m
C = (9*8.854×10⁻¹²*5.026×10⁻⁹)/9×10⁻⁹
C = 44.5 pF
C = 44.5×10⁻¹² F
Therefore, the time constant is
τ = RC
τ = 6.45×10⁷*44.5×10⁻¹²
τ = 2.87×10⁻³ seconds
Answer:
(A) Their high energy
Explanation:
The higher the energy of the x-ray the more "likely" they will pass through.
The x-ray is electromagnetic energy caused by energy changes in an electron.
X-ray are energetic and have enough energy to break up molecules. That is what reveals the bad or damaged cells in our body.
Answer:
Explanation:
Inital KE = (1/2) m v^2 = (1/2) * 1500 * 50^2 = 1,875,000 J
Final KE = (1/2) * 1500 * 100^2 = 7,500,000 J
But ,
4 * 1875000 = 7500000
so the KE has increased by 4 times.
Answer: ok
Explanation:
The molecules in hot air are moving faster than the molecules in cold air. Because of this, the molecules in hot air tend to be further apart on average, giving hot air a lower density. That means, for the same volume of air, hot air has fewer molecules and so it weighs less.