The wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength. That number, also known as the frequency, will be larger for a short-wavelength wave than for a long-wavelength wave.
Answer:
The initial velocity of the ball is 28.714 m/s
Explanation:
Given;
time of flight of the ball, t = 2.93 s
acceleration due to gravity, g = 9.8 m/s²
initial velocity of the ball, u = ?
The initial velocity of the ball is given by;
v = u + (-g)t
where;
v is the final speed of the ball at the given time, = 0
g is negative because of upward motion
0 = u -gt
u = gt
u = (9.8 x 2.93)
u = 28.714 m/s
Therefore, the initial velocity of the ball is 28.714 m/s
and closing
.
The heart has 4 valves. They are what makes the lub-dub lub-dub sounds that can be heard from the chest.
The mitral valve is located between the left atrium and the left ventricle. It closes the left atrium to collect oxygenated blood from the lungs and opens to pass it on to the left ventricle.
The tricuspid valve is located between the right atrium and the right ventricle. It closes the right atrium to hold unoxygenated blood and opens to pass it on to the right ventricle ensuring a one way flow.
The aortic valve is located between the aorta and the left ventricle. It closes the left ventricle and opens to the aorta to pass on the oxygen-rich blood to the body.
The pulmonary valve is located between the pulmonary artery and the right ventricle. It closes off the right ventricle and opens to pass on unoxygenated blood to the lungs.