I believe what you are talking about is the synthesis reaction
Answer:
It depends. what hot spot are you looking for?
Answer:
<h3>the equilibrium constant of the decomposition of hydrogen bromide is 0.084</h3>
Explanation:
Amount of HBr dissociated

2HBr(g) ⇆ H2(g) + Br2(g)
Initial Changes 2.15 0 0 (mol)
- 0.789 + 0.395 + 0.395 (mol)
At equilibrium 1.361 0.395 0.395 (mole)
Concentration 1.361 / 1 0.395 / 1 0.395 / 1
at equilibrium (mole/L)
![K_c=\frac{[H_2][Br_2]}{[HBr]^2} \\\\=\frac{(0.395)(0.395)}{(1.361)^2} \\\\=\frac{0.156025}{1.852321} \\\\=0.084](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BBr_2%5D%7D%7B%5BHBr%5D%5E2%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B%280.395%29%280.395%29%7D%7B%281.361%29%5E2%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B0.156025%7D%7B1.852321%7D%20%5C%5C%5C%5C%3D0.084)
<h3>Therefore, the equilibrium constant of the decomposition of hydrogen bromide is 0.084</h3>
Answer:
The rate of disappearance of
for this period is
Explanation:
Initial concentration of
= x = 0.0138 M
Final concentration of
= y = 0.00886 M
Time elapsed during change in concentration = Δt = 374 s
Change in concentration ,
= y - x = 0.00886 - 0.0138 M = -0.00494 M
The rate of disappearance of
for this period is:
![\frac{\Delta [NO_2]}{\Delta t}=\frac{-0.00494 M}{374 s}=-1.32\times 10^{-5} M/s](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B-0.00494%20M%7D%7B374%20s%7D%3D-1.32%5Ctimes%2010%5E%7B-5%7D%20M%2Fs)