Answer:
Ka = 1.39x10⁻⁶
Explanation:
A monoprotic acid, HX, will be in equilibrium in an aqueous medium such as:
HX(aq) ⇄ H⁺(aq) + X⁻(aq)
<em>Where Ka is:</em>
Ka = [H⁺] [X⁻] / [HX]
<em>Where [] is the molar concentration in equilibrium of each specie.
</em>
The equilibrium is reached when some HX reacts producing H+ and X-, that is:
[HX] = 1.64M - X
[H⁺] = X
[X⁻] = X
As pH is 2.82 = -log [H⁺]:
[H⁺] = 1.51x10⁻³M:
[HX] = 1.64M - 1.51x10⁻³M = 1.638M
[H⁺] = 1.51x10⁻³M
[X⁻] = 1.51x10⁻³M
And Ka is:
Ka = [1.51x10⁻³M] [1.51x10⁻³M] / [1.638M]
<h3>Ka = 1.39x10⁻⁶</h3>
Black hole is likely to spin
In order to maintain neutrality, the negatively charged ions in the salt bridge will migrate into the anodic half-cell. A similar (but reversed) situation is found in the cathodic cell.
<h3>
What purpose does a salt bridge serve in an oxidation process?</h3>
Anions (negatively charged particles) are added to the solution of the oxidation half of the cell by the salt bridge, and cations (positively charged particles) are added to the solution of the reduction half of the reaction.
<h3>
What purpose does the salt bridge serve in a galvanic cell?</h3>
For instance, KCl, AgNO3, etc. In a galvanic cell, such as a voltaic cell or Daniel cell, salt bridges are typically used. A salt bridge's primary job is to assist in preserving the electrical neutrality of the internal circuit. Additionally, it aids in keeping the cell's response from reaching equilibrium.
Learn more about Salt bridge here:-
brainly.com/question/20345420
#SPJ4