If the runner ends where she started, then her total displacement is
, which means her average velocity will be

The total distance she traversed, however, was
, which gives her an average speed of

Answer:
The magnitude of the induced Emf is 
Explanation:
The width of the truck is given as 79inch but we need to convert to meter for consistency, then
The width= 79inch × 0.0254=2.0066 metres.
Now we can calculate the induced Emf using expresion below;
Then the 
Where B= magnetic field component
L= width
V= velocity
=(40*10^-6) × (42) × (2.0066)
=0.003371V
Therefore, the magnitude emf that is induced between the driver and passenger sides of the truck is 0.003371V
Answer:
the coefficient of Kinetic friction between the tires and road is 0.38
Option A) .38 is the correct answer
Explanation:
Given that;
final velocity v = 0
initial velocity u = 15m/s
time taken t = 4 s
acceleration a = ?
from the equation of motion
v = u + at
we substitute
0 = 15 + a × 4
acceleration a = -15/4 = - 3.75 m/s²
the negative sign tells us that its a deacceleration so the sign can be ignored.
Deacceleration due to friction a = μ × g
we substitute
3.75 = μ × 9.8
μ = 3.75 / 9.8 = 0.3826 ≈ 0.38
Therefore the coefficient of Kinetic friction between the tires and road is 0.38
Option A) .38 is the correct answer
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, the formula for velocity is;
Velocity (in m/s) = distance/time
The distance the car covered in the completed question is divided by the difference in the time interval
The difference in the time interval will be = 1.5s - 1.0s = 0.5s
NOTE: the distance must be in meters or be converted to meters
Answer:
my mind cant comprehend a shing word u just said
Explanation: