Question: 18 kilogram Mass Block rest on level surface if the coefficient of static friction between the Block and the surface is 0.6 what horizontal force is required to just move the blcok ( take gravity as 10m/s2
)
Answer:
108 N
Explanation:
From the question,
Applying
F' = mgμ................ Equation 1
Where F' = Frictional force = horizontal force required to just move the block, m = mass of the block, g = acceleration due to gravity, μ = coefficient of static friction.
From the question,
Given: m = 18 kg, μ = 0.6, g = 10 m/s²
Substitute these values into equation 1
F' = 18×0.6×10
F' = 108 N
Answer:
False
Explanation:
When a driver is impaired the brain will need an extra second or two to wake up, after it does wake up it tends to drift off regularly.
Answer:
The impulse exerted by one cart on the other has a magnitude of 4 N.s.
Explanation:
Given;
mass of the first cart, m₁ = 2 kg
initial speed of the first car, u₁ = 3 m/s
mass of the second cart, m₂ = 4 kg
initial speed of the second cart, u₂ = 0
Let the final speed of both carts = v, since they stick together after collision.
Apply the principle of conservation of momentum to determine v
m₁u₁ + m₂u₂ = v(m₁ + m₂)
2 x 3 + 0 = v(2 + 4)
6 = 6v
v = 1 m/s
Impulse is given by;
I = ft = mΔv = m(
The impulse exerted by the first cart on the second cart is given;
I = 2 (3 -1 )
I = 4 N.s
The impulse exerted by the second cart on the first cart is given;
I = 4(0-1)
I = - 4 N.s (equal in magnitude but opposite in direction to the impulse exerted by the first).
Therefore, the impulse exerted by one cart on the other has a magnitude of 4 N.s.
The ball was moving for 0.8seconds
This is because 4/5 x 1 = 0.8
Hope this helps and good luckkkk :)
<h3>Answer : </h3><h3 /><h3>A ) The larger gear can be moved by applying a relatively small force on the smaller gear.</h3>
<h3>B )
The force applied on the smaller gear is transmitted without any loss to the larger gear .</h3><h3 /><h3>
C ) the direction of motion can be changed without changing the direction of the applied force .</h3>
D ) the system would continue to move without any further, after and initial force has set in motion.