Answer:
V = 4.63 m/s
V = 11.31 m/s
Explanation:
Given,
The distance traveled by the bus, towards north, d = 2.5 km
= 2500 m
The time taken by the trip is, t = 9 min
= 540 s
The velocity of the bus,
V = d / t
= 2500 / 540
= 4.63 m/s
At another point, the bus travels at a constant speed of v = 18 m/s
Therefore the velocity becomes
V = (4.63 + 18)/2
= 11.31 m/s
Hence, the velocity of the bus, V = 11.31 m/s
Answer:
5.5 km
Explanation:
First, we convert the distance from km/h to m/s
910 * 1000/3600
= 252.78 m/s
Now, we use the formula v²/r = gtanθ to get our needed radius
making r the subject of the formula, we have
r = v²/gtanθ, where
r = radius of curvature needed
g = acceleration due to gravity
θ = angle of banking
r = 252.78² / (9.8 * tan 50)
r = 63897.73 / (9.8 * 1.19)
r = 63897.73 / 11.662
r = 5479 m or 5.5 km
Thus, we conclude that the minimum curvature radius needed for the turn is 5.5 km
Answer:
Explanation:
First of all, we need to calculate the total energy supplied to the calorimeter.
We know that:
V = 3.6 V is the voltage applied
I = 2.6 A is the current
So, the power delivered is
Then, this power is delivered for a time of
t = 350 s
Therefore, the energy supplied is
Finally, the change in temperature of an object is related to the energy supplied by
where in this problem:
E = 3276 J is the energy supplied
C is the heat capacity of the object
is the change in temperature
Solving for C, we find:
What part of the bacterial cell helps it stick to surfaces
Answer:
The summary of the given statement is explained below throughout the explanation segment.
Explanation:
- Drain certain surfaces throughout warm water of such soap during the very first sink. This same sanitizing of bacteria would not destroy whether grime would be in the direction.
- Exfoliate the plates throughout plain water during the secondary drain. As with grime, the residual soap could avoid the kill off bacteria and viruses by the sanitizer.