Answer:

Explanation:
The energy of a photon is:
when h is the Planck constant.

Then, we calculate the energy of a photon with a wavelength equal to 550 nm.

To find the number of photons we can use this equation:

Have a nice day!
Answer:
The impulse on the ball delivered by the floor is 2.52 kg-m/s.
Explanation:
Given that,
Mass of the ball, m = 0.22 kg
It is dropped from an initial height of 1.80 m. It rebounds back after colliding with the floor to a final height of 1.50 m. Initial velocity and final velocity can be calculated using conservation of energy as :

Final velocity,

As the ball rebounds, v = -5.47 m/s
We need to find the impulse on the ball delivered by the floor. We know that impulse is equal to the change in momentum as follows :

So, the impulse on the ball delivered by the floor is 2.52 kg-m/s.
Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R
Answer:
(iv), (v), (vi) would be incorrect.
Explanation:
(iv) Force isn't transferred from one colliding object to another, but momentum can be.
(v) An object doesn't stop immediately a force stops acting on it. Think of a thrown ball.
(vi) For an object not to move, it means that the net force on the object is zero, and not necessarily that there are no forces acting on the object. For example, an object could be pushed on one side, and be pushed on the other side with an equal force in the opposite direction. The forces would cancel each other and the net force would be zero.
The rest should be correct.