Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
Answer:
C
Explanation:
BECAUSE ITS GOING ON AND ON IF ITS NOT CORRECT I WILL VOTE YOU BRAINLEST ON MY QUESTION
It means, <span>Acceleration increases as mass decreases.
So, option C is your answer.
Hope this helps!
</span>
The distance of the canoeist from the dock is equal to length of the canoe, L.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that the total momentum of an isolated system is always conserved.
v(m₁ + m₂) = m₁v₁ + m₂v₂
where;
v is the velocity of the canoeist and the canoe when they are together
- u₁ is the velocity of the canoe
- u₂ velocity of the canoeist
- m₁ mass of the canoe
- m₂ mass of the canoeist
<h3>Distance traveled by the canoeist</h3>
The distance traveled by the canoeist from the back of the canoe to the front of the canoe is equal to the length of the canoe.
Thus, the distance of the canoeist from the dock is equal to length of the canoe, L.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
Answer:
4462.0927 W
Explanation:
= Emissivity of the panel = 1
= Stefan-Boltzmann constant = 
T = Temperature = (273.15+6)
Area of the panel is given by

The power radiated is given by

The power radiated from each panel is 4462.0927 W