Answer:
A. The gas molecules possess kinetic energy.
Explanation:
The characteristics of the Ideal gases are given by the Kinetic Theory of gases which are as follows:-
Gases consist of particles in constant, random motion. They continue in a straight line until they collide with something—usually each other or the walls of their container.
Particles are point masses with no volume. The particles are so small compared to the space between them, that we do not consider their size in ideal gases.
No molecular forces are at work. This means that there is no attraction or repulsion between the particles.
Gas pressure is due to the molecules colliding with the walls
Answer:
the sum is Rs 4,200
Explanation:
Given that
3 by 7 of the sum is $1,800
We need to find out the sum
So,
Here we assume the sum be x
So the following equation should be made
3 ÷ 7 × x = 1800
3x = 1800 × 7
x = (1800 × 7) ÷ 3
= Rs 4,200
Hence, the sum is Rs 4,200
The same would be considered and relevant
The empirical formula is Fe₃O₄.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the molar ratio of Fe to O.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio</u>¹ <u>×3</u>² <u>Integers</u>³
Fe 0.77 1 3 3
O 1.0 1.3 3.9 4
¹ To get the molar ratio, you divide each number of moles by the smallest number (0.77).
² If the ratio is not close to an integer, multiply by a number (in this case, 3) to get numbers that are close to integers.
³ Round off these numbers to integers (3 and 4).
The empirical formula is Fe₃O₄.
Answer:
A. Kinetic energies of molecules increase.
B. Speeds of molecules increase.
C. Number of collisions per second increase.