Answer:
It is true. a) 0.25 mol
Explanation:
<em>Hello </em><em>there?</em>
To begin solving this problem, you have to write down the chemical equation and make sure it is well balanced.
The chemical equation is;
3Mg(s) + N2(g) => Mg3N2(s)
1 mole of Mg = 24g
We have 18g of Magnesium (Mg) reacting with Nitrogen gas (N2)
From our equation,
Mole ratio = 3 : 1, (Mg : N2)
1 mol Mg = 24g
x mol Mg = 18g
x mol Mg = (18/24) = 0.75 mol Mg
But mole ratio = 3 : 1 (Mg : N2)
This means that 3 => 0.75 mol Mg
What about ratio 1 of N2?
N2 = (0.75 mol ÷ 3)/1
= 0.25 mol N2
<em>I </em><em>hope</em><em> </em><em>this </em><em>helps</em><em> </em><em>you </em><em>to </em><em>understand</em><em> </em><em>better</em><em>.</em><em> </em><em>Ha</em><em>v</em><em>e </em><em>a </em><em>nice </em><em>studies.</em><em> </em><em />
Answer:
The compound amount is $303.03 .
Explanation:
Formula for compound interest:

Principle amount = $1100
Rate of the interest compounded semiannually :
= R = 9% = 0.09
Number of times interest compounded, n =
(semi means two times in a year)
Time period = T = 14

The compound amount is $303.03 .
Explanation:
1)

Mass of NaOH = m
MOlar mass of NaOH = 40 g/mol
Volume of NaOH solution = 1.00 L
Molarity of the solution= 1.00 M


A student can prepare the solution by dissolving the 40. grams of NaOH in is small volume of water and making that whole volume of solution to volume of 1 L.
Upto two significant figures mass should be determined.
2)
(dilution equation)
Molarity of the NaOH solution = 
Volume of the solution = 
Molarity of the NaOH solution after dilution = 
Volume of NaOH solution after dilution= 


A student can prepare NaOH solution of 1.00 M by diluting the 0.500 L of 2.00 M solution of NaOH with water to 1.00 L volume.
Upto three significant figures volume should be determined.
Explanation:
<h3>PLA is a polyester produced by fermentation under controlled conditions of a carbohydrate source like corn starch or sugarcane. ... The starch is then mixed with acid or enzymes and heated. This process “breaks” starch into dextrose (D-glucose), or corn sugar.</h3>
<h3>PLA is a polymer made from high levels of polylactic acid molecules. </h3><h3>For PLA to biodegrade, you must break up the polymer by adding </h3><h3>water to it (a process known as hydrolyzing). Heat and moisture are required for hydrolyzing to occur.</h3>
<h3>PLA consists of renewable raw materials and is biodegradable in industrial composting plants. </h3><h3>However, due to the lack of infrastructure, it is difficult to </h3><h3>compost PLA industrially or to</h3><h3> recycle it.</h3>