Answer:
number of moles is inversely proportional to the Temperature
Explanation:
As we know
PV = nRT
where P is the pressure
V is the volume
n is the number of moles
R is the gas constant
and T is the temperature
If we see the equation, we can find that n is inversely proportional to the Temperature
Answer:
Layer D
Explanation:
First means older.
Rock E is an intrusion, so it is younger than all the layers it pass through. Apparently, Rock E is the youngest layer. So, Layer D is came before Layer E.
Hope this helps!
Have a great day :)
Answer:
Explanation:Typically, manufactured glass contains around 15% sodium oxide, 70% silica (silicon dioxide) and 9% lime (calcium oxide). The sodium carbonate "soda" serves as a flux to lower the temperature at which the silica mixture melts
Answer:
![K=K_1*K_2\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Explanation:
Hello there!
In this case, for the given chemical reaction, it turns out firstly necessary to write the equilibrium expression for both reactions 1 and 2:
![K_1=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \\\\K_2=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_1%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5C%5C%5C%5CK_2%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)
Now, when we combine them to get the overall expression, we infer these two are multiplied to get:
![K=K_1*K_2\\\\K=\frac{[CO][H_2]^3}{[CH_4][H_2O]} *\frac{[CO_2][H_2]}{[CO][H_2O]}\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%2A%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Regards!