0.212 g of KHP is are dissolved in 50.00 mL of water and are titrated by 35.00 mL of 0.0297 M NaOH.
Potassium hydrogen phthalate, KHP, is a monoprotic acid often used to standardize NaOH solutions.
The balanced neutralization equation is:
NaOH(aq) + KHC₈H₄O₄(aq) ⇒ KNaC₈H₄O₄(aq) + H₂O(l)
- Step 1: Calculate the reacting moles of KHP.
0.212 g of KHP react. The molar mass of KHP is 204.22 g/mol.
0.212 g × 1 mol/204.22 g = 1.04 × 10⁻³ mol
- Step 2: Determine the reacting moles of NaOH.
The molar ratio of NaOH to KHP is 1:1.
1.04 × 10⁻³ mol KHP × 1 mol NaOH/1 mol KHP = 1.04 × 10⁻³ mol NaOH
- Step 3: Calculate the molarity of NaOH.
1.04 × 10⁻³ moles of NaOH are in 35.00 mL of solution.
[NaOH] = 1.04 × 10⁻³ mol / 35.00 × 10⁻³ L = 0.0297 M
0.212 g of KHP is are dissolved in 50.00 mL of water and are titrated by 35.00 mL of 0.0297 M NaOH.
Learn more about titration here: brainly.com/question/4225093
Types of rocks: Igneous, sedimentary, and metamorphic
There are over 200 names of minerals, I'm not sure what you want for that
Answer:
The forces acting on the book are balanced by each other.
Answer:
See explanation and image attached for details
Explanation:
The reaction involves the heterolytic fission of the Br-Br bond in the bromine molecule to yield a bromine cation which attacks the but-1-ene to form a cyclic intermediate called the brominium ion. The bromine anion must now attack from the opposite face of the brominium ion due to steric clashes to form a product of a 1,2-dibromoalkane having the anti- stereochemistry.