1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
3 years ago
5

The following reaction shows sodium hydroxide reacting with sulfuric acid.

Chemistry
1 answer:
elena-14-01-66 [18.8K]3 years ago
4 0

The amount of  Na₂SO₄ would be 15.09 grams

<h3>Stoichiometric calculation</h3>

From the equation of the reaction:

4NaOH + 2H₂SO₄ --> 2Na₂SO₄ + 4H₂O

Mole ratio of NaOH and Na₂SO₄ = 2:1

Mole of 8.50 grams of NaOH = 8.50/40

                                                 = 0.21 mole

Equivalent mole of Na₂SO₄ = 0.21/2

                                              = 0.11 mole

Mass of 0.11 mole Na₂SO₄ = 0.11 x 142.04

                                             = 15.09 grams

More on stoichiometric reactions can be found here: brainly.com/question/8062886

You might be interested in
n the laboratory, two forms of sodium phosphate will be available (the monobasic monohydrate NaH2PO4·H2O, F.W. = 137.99 g/mol, a
const2013 [10]

Answer:

The compound you will use is the Dibasic phosphate

Explanation:

Simple phosphate buffer is used ubiquitously in biological experiments, as it can be adapted to a variety of pH levels, including isotonic. This wide range is due to phosphoric acid having 3 dissociation constants, (known in chemistry as a triprotic acid) allowing for formulation of buffers near each of the pH levels of 2.15, 6.86, or 12.32. Phosphate buffer is highly water soluble and has a high buffering capacity,

In this case the most efficient way is to disolve the dibasic compound which in the reaction with the water will form the monobasic phosphate.

To make the buffer you have to prepare the amount of distillate water needed, disolve the dibasic phospate, and then adjust with HCl or NaOH depending on the pH needed.

6 0
3 years ago
3. After 7.9 grams of sodium are dropped into a bathtub full of water, how many grams of hydrogen gas are released?
Pavel [41]

Answer:

3) About 0.35 grams of hydrogen gas.

4) About 65.2 grams of aluminum oxide.

Explanation:

Question 3)

We are given that 7.9 grams of sodium is dropped into a bathtub of water, and we want to determine how many grams of hydrogen gas is released.

Since sodium is higher than hydrogen on the activity series, sodium will replace hydrogen in a single-replacement reaction for sodium oxide. Hence, our equation is:

\displaystyle \text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To balance it, we can simply add another sodium atom on the left. Hence:

\displaystyle 2\text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To convert from grams of sodium to grams of hydrogen gas, we can convert from sodium to moles of sodium, use the mole ratios to find moles in hydrogen gas, and then use hydrogen's molar mass to find its amount in grams.

The molar mass of sodium is 22.990 g/mol. Hence:

\displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}

From the chemical equation, we can see that two moles of sodium produce one mole of hydrogen gas. Hence:

\displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}

And the molar mass of hydrogen gas is 2.016 g/mol. Hence:

\displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Given the initial value and the above ratios, this yields:

\displaystyle 7.9\text{ g Na}\cdot \displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}\cdot \displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Cancel like units:

=\displaystyle 7.9\cdot \displaystyle \frac{1}{22.990}\cdot \displaystyle \frac{1}{2}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1}

Multiply. Hence:

=0.3463...\text{ g H$_2$}

Since we should have two significant values:

=0.35\text{ g H$_2$}

So, about 0.35 grams of hydrogen gas will be released.

Question 4)

Excess oxygen gas is added to 34.5 grams of aluminum and produces aluminum oxide. Hence, our chemical equation is:

\displaystyle \text{O$_2$} + \text{Al} \rightarrow \text{Al$_2$O$_3$}

To balance this, we can place a three in front of the oxygen, four in front of aluminum, and two in front of aluminum oxide. Hence:

\displaystyle3\text{O$_2$} + 4\text{Al} \rightarrow 2\text{Al$_2$O$_3$}

To convert from grams of aluminum to grams of aluminum oxide, we can convert aluminum to moles, use the mole ratios to find the moles of aluminum oxide, and then use its molar mass to determine the amount of grams.

The molar mass of aluminum is 26.982 g/mol. Thus:

\displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}

According to the equation, four moles of aluminum produces two moles of aluminum oxide. Hence:

\displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}

And the molar mass of aluminum oxide is 101.961 g/mol. Hence: \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Using the given value and the above ratios, we acquire:

\displaystyle 34.5\text{ g Al}\cdot \displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}\cdot \displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Cancel like units:

\displaystyle= \displaystyle 34.5\cdot \displaystyle \frac{1}{26.982}\cdot \displaystyle \frac{2}{4}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1}

Multiply:

\displaystyle = 65.1852... \text{ g Al$_2$O$_3$}

Since the resulting value should have three significant figures:

\displaystyle = 65.2 \text{ g Al$_2$O$_3$}

So, approximately 65.2 grams of aluminum oxide is produced.

5 0
3 years ago
Read 2 more answers
Which of the following metals would be the best for the new frying pan?
Rudik [331]

Answer:

Copper

Explanation:

hope this helps!

7 0
3 years ago
Which element has properties of both metals and nonmetals?
PilotLPTM [1.2K]
<span>Metalloids have the properties of metals and nonmetals.</span>
8 0
3 years ago
If 45.0 mL of ethanol (density=0.789 g/mL) initially at 9.0 C is mixed with 45.0 mL of water (density=1.0 g/mL) initially at 28.
Klio2033 [76]

Answer : The final temperature of the mixture is 22.7^oC

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

q_1=-q_2

m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)

And as we know that,

Mass = Density × Volume

Thus, the formula becomes,

(\rho_1\times V_1)\times c_1\times (T_f-T_1)=-(\rho_2\times V_2)\times c_2\times (T_f-T_2)

where,

c_1 = specific heat of ethanol = 2.3J/g^oC

c_2 = specific heat of water = 4.18J/g^oC

m_1 = mass of ethanol

m_2 = mass of water

\rho_1 = density of ethanol = 0.789 g/mL

\rho_2 = density of water = 1.0 g/mL

V_1 = volume of ethanol = 45.0 mL

V_2 = volume of water = 45.0 mL

T_f = final temperature of mixture = ?

T_1 = initial temperature of ethanol = 9.0^oC

T_2 = initial temperature of water = 28.6^oC

Now put all the given values in the above formula, we get

(0.789g/mL\times 45.0mL)\times (2.3J/g^oC)\times (T_f-9.0)^oC=-(1.0g/mL\times 45.0mL)\times 4.18J/g^oC\times (T_f-28.6)^oC

T_f=22.7^oC

Therefore, the final temperature of the mixture is 22.7^oC

4 0
3 years ago
Other questions:
  • A tank has a total pressure of 285 kPa and contains Hydrogen, Oxygen, Carbon dioxide, and Neon. If Neon has a partial pressure o
    7·1 answer
  • Which of the following is a product formed when Ag2O decomposes?
    13·2 answers
  • HELP PLEASE!!!!!!!!!!!!!!!
    10·1 answer
  • A sample of gaseous PCl5 was introduced into an evacuated flask so that the pressure of pure PCl5 would be 0.50 atm at 523 K. Ho
    6·1 answer
  • Consider the reaction 2H2S(g)⇌2H2(g)+S2(g),Kp=2.4×10−4 (at 1073 K) A reaction mixture contains 0.111 atm of H2, 0.051 atm of S2,
    7·1 answer
  • How many grams of lithium fluoride is required to make 1.2 L of a 3.5 M<br> solution?
    10·1 answer
  • At 25°C, gas in a rigid cylinder with a movable piston has a volume of 145 mL and a pressure of 125 kPa. Then the gas is compres
    15·1 answer
  • Light energy is energy in movement of <br>​
    15·1 answer
  • 8. Is specific heat an intensive or extensive property? <br> (will give brainlist)
    13·2 answers
  • Chemical weathering would be most effective ________.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!