1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
14

Four kilograms of carbon monoxide (CO) is contained in a rigid tank with a volume of 1 m3. The tank is fitted with a paddle whee

l that transfers energy to the CO at a constant rate of 14 W for 1 h. During the process, the specific internal energy of the carbon monoxide increases by 10 kJ/kg. If no overall changes in kinetic and potential energy occur, determine: (a) the specific volume of the carbon monoxide at the final state, in m3/kg. (b) the energy transfer by work from the carbon monoxide, in kJ. (c) the energy transfer by heat transfer to the carbon monoxide, in kJ.
Engineering
1 answer:
Juli2301 [7.4K]3 years ago
7 0

Answer:

a) 1 m^3/Kg  

b) 504 kJ

c) 514 kJ

Explanation:

<u>Given  </u>

-The mass of C_o2 = 1 kg  

-The volume of the tank V_tank = 1 m^3  

-The added energy E = 14 W  

-The time of adding energy t = 10 s  

-The increase in specific internal energy Δu = +10 kJ/kg  

-The change in kinetic energy ΔKE = 0 and The change in potential energy  

ΔPE =0  

<u>Required  </u>

(a)Specific volume at the final state v_2

(b)The energy transferred by the work W in kJ.  

(c)The energy transferred by the heat transfer W in kJ and the direction of  

the heat transfer.  

Assumption  

-Quasi-equilibrium process.  

<u>Solution</u>  

(a) The volume and the mass doesn't change then, the specific volume is constant.

 v= V_tank/m ---> 1/1= 1 m^3/Kg  

(b) The added work is defined by.  

W =E * t --->  14 x 10 x 3600 x 10^-3 = 504 kJ  

(c) From the first law of thermodynamics.  

Q - W = m * Δu

Q = (m * Δu) + W--> (1 x 10) + 504 = 514 kJ

The heat have (+) sign the n it is added to the system.

You might be interested in
). A 50 mm diameter cylinder is subjected to an axial compressive load of 80 kN. The cylinder is partially
Delicious77 [7]

Answer:

\frac{e'_z}{e_z} = 0.87142

Explanation:

Given:-

- The diameter of the cylinder, d = 50 mm.

- The compressive load, F = 80 KN.

Solution:-

- We will form a 3-dimensional coordinate system. The z-direction is along the axial load, and x-y plane is categorized by lateral direction.

- Next we will write down principal strains ( εx, εy, εz ) in all three directions in terms of corresponding stresses ( σx, σy, σz ). The stress-strain relationships will be used for anisotropic material with poisson ratio ( ν ).

                          εx = - [ σx - ν( σy + σz ) ] / E

                          εy = - [ σy - ν( σx + σz ) ] / E

                          εz = - [ σz - ν( σy + σx ) ] / E

- First we will investigate the "no-restraint" case. That is cylinder to expand in lateral direction as usual and contract in compressive load direction. The stresses in the x-y plane are zero because there is " no-restraint" and the lateral expansion occurs only due to compressive load in axial direction. So σy= σx = 0, the 3-D stress - strain relationships can be simplified to:

                          εx =  [ ν*σz ] / E

                          εy = [ ν*σz ] / E

                          εz = - [ σz ] / E   .... Eq 1

- The "restraint" case is a bit tricky in the sense, that first: There is a restriction in the lateral expansion. Second: The restriction is partial in nature, such, that lateral expansion is not completely restrained but reduced to half.

- We will use the strains ( simplified expressions ) evaluated in " no-restraint case " and half them. So the new lateral strains ( εx', εy' ) would be:

                         εx' = - [ σx' - ν( σy' + σz ) ] / E = 0.5*εx

                         εx' = - [ σx' - ν( σy' + σz ) ] / E =  [ ν*σz ] / 2E

                         εy' = - [ σy' - ν( σx' + σz ) ] / E = 0.5*εy

                         εx' = - [ σy' - ν( σx' + σz ) ] / E =  [ ν*σz ] / 2E

- Now, we need to visualize the "enclosure". We see that the entire x-y plane and family of planes parallel to ( z = 0 - plane ) are enclosed by the well-fitted casing. However, the axial direction is free! So, in other words the reduction in lateral expansion has to be compensated by the axial direction. And that compensatory effect is governed by induced compressive stresses ( σx', σy' ) by the fitting on the cylinderical surface.

- We will use the relationhsips developed above and determine the induced compressive stresses ( σx', σy' ).

Note:  σx' = σy', The cylinder is radially enclosed around the entire surface.

Therefore,

                        - [ σx' - ν( σx'+ σz ) ] =  [ ν*σz ] / 2

                          σx' ( 1 - v ) = [ ν*σz ] / 2

                          σx' = σy' = [ ν*σz ] / [ 2*( 1 - v ) ]

- Now use the induced stresses in ( x-y ) plane and determine the new axial strain ( εz' ):

                           εz' = - [ σz - ν( σy' + σx' ) ] / E

                           εz' = - { σz - [ ν^2*σz ] / [ 1 - v ] } / E

                          εz' = - σz*{ 1 - [ ν^2 ] / [ 1 - v ] } / E  ... Eq2

- Now take the ratio of the axial strains determined in the second case ( Eq2 ) to the first case ( Eq1 ) as follows:

                            \frac{e'_z}{e_z} = \frac{- \frac{s_z}{E} * [ 1 - \frac{v^2}{1 - v} ]  }{-\frac{s_z}{E}}  \\\\\frac{e'_z}{e_z} = [ 1 - \frac{v^2}{1 - v} ] = [ 1 - \frac{0.3^2}{1 - 0.3} ] \\\\\frac{e'_z}{e_z} = 0.87142... Answer

5 0
3 years ago
_______ is a material property that pertains to local resistance to plastic deformation, such as scratching or denting. It is of
Readme [11.4K]

Answer: hardness

Explanation:

Hardness is a measure of a material's ability to resist plastic deformation. In other words, it is a measure of how resistant material is to denting or scratching. Diamond, for example, is a very hard material. It is extremely difficult to dent or scratch a diamond. In contrast, it is very easy to scratch or dent most plastics.

7 0
3 years ago
0 - 1"<br> -20<br> -15<br> -10<br> 5<br> 0 1 2 3<br> 0
faust18 [17]

Answer:

#WeirdestQuestionOfAllTime

Explanation:

8 0
3 years ago
A machine used to shred cardboard boxes for composting has a first cost of $10,000, an AOC of $7000 per year, a 3-year life, and
borishaifa [10]
Annual Payment where F is accumulated sum of amount, n is number of years and i is annual rate of interest. The standard notation equation is in the image since i can’t type it-
6 0
2 years ago
An electrical current of 700 A flows through a stainlesssteel cable having a diameter of 5 mm and an electricalresistance of 610
KatRina [158]

Answer:

778.4°C

Explanation:

I = 700

R = 6x10⁻⁴

we first calculate the rate of heat that is being transferred by the current

q = I²R

q = 700²(6x10⁻⁴)

= 490000x0.0006

= 294 W/M

we calculate the surface temperature

Ts = T∞ + \frac{q}{h\pi Di}

Ts = 30+\frac{294}{25*\frac{22}{7}*\frac{5}{1000}  }

Ts=30+\frac{294}{0.3928} \\

Ts =30+748.4\\Ts = 778.4

The surface temperature is therefore 778.4°C if the cable is bare

6 0
2 years ago
Other questions:
  • Which solution causes cells to shrink
    13·1 answer
  • A field sample of an unconfined aquifer is packed in a test cylinder. The length and diameter of the cylinder are 50 cm and 6 cm
    9·1 answer
  • Breaks do not overheat true false ?
    6·1 answer
  • If a particle moving in a circular path of radius 5 m has a velocity function v = 4t2 m/s, what is the magnitude of its total ac
    15·2 answers
  • Which of the following is part of the highway
    11·2 answers
  • 11. Technicians A and B are discussing
    12·1 answer
  • Describe in your own words the three strengthening mechanisms
    7·1 answer
  • Robots make computations and calculations using what part
    12·1 answer
  • Question
    8·1 answer
  • If an internally piloted DCV does not shift, you should use a gauge to _____. A.check the pilot line pressure b. check the inlet
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!