Answer:
correct me if i'm wrong but i think it's false
Explanation:
Answer:
The condition does not hold for a compression test
Explanation:
For a compression test the engineering stress - strain curve is higher than the actual stress-strain curve and this is because the force needed in compression is higher than the force needed during Tension. The higher the force in compression leads to increase in the area therefore for the same scale of stress the there is more stress on the Engineering curve making it higher than the actual curve.
<em>Hence the condition of : on the same scale for stress, the tensile true stress-true strain curve is higher than the engineering stress-engineering strain curve.</em><em> </em>does not hold for compression test
Answer:
maximum stress is 2872.28 MPa
Explanation:
given data
radius of curvature = 3 ×
mm
crack length = 5.5 ×
mm
tensile stress = 150 MPa
to find out
maximum stress
solution
we know that maximum stress formula that is express as
......................1
here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack
so put here all value in equation 1 we get
σm = 2872.28 MPa
so maximum stress is 2872.28 MPa
Answer:
a) the power consumption of the LEDs is 0.25 watt
b) the LEDs drew 0.0555 Amp current
Explanation:
Given the data in the question;
Three AAA Batteries;
<---- 1000mAh [ + -] 1.5 v ------1000mAh [ + -] 1.5 v --------1000mAh [ + -] 1.5 v------
so V_total = 3 × 1.5 = 4.5V
a) the power consumption of the LEDs
I_battery = 1000 mAh / 18hrs { for 18 hrs}
I_battery = 1/18 Amp { delivery by battery}
so consumption by led = I × V_total
we substitute
⇒ 1/18 × 4.5
P = 0.25 watt
Therefore the power consumption of the LEDs is 0.25 watt
b) How much current do the LEDs draw
I_Draw = I_battery = 1/18 Amp = 0.0555 Amp
Therefore the LEDs drew 0.0555 Amp current
Answer:
(A) Because the angle of twist of a material is often used to predict its shear toughness
Explanation:
In engineering, torsion is the solicitation that occurs when a moment is applied on the longitudinal axis of a construction element or mechanical prism, such as axes or, in general, elements where one dimension predominates over the other two, although it is possible to find it in diverse situations.
The torsion is characterized geometrically because any curve parallel to the axis of the piece is no longer contained in the plane initially formed by the two curves. Instead, a curve parallel to the axis is twisted around it.
The general study of torsion is complicated because under that type of solicitation the cross section of a piece in general is characterized by two phenomena:
1- Tangential tensions appear parallel to the cross section.
2- When the previous tensions are not properly distributed, which always happens unless the section has circular symmetry, sectional warps appear that make the deformed cross sections not flat.