1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
10

What is Back EMF? How does it limits the speed of a permanent magnet DC?

Engineering
1 answer:
ss7ja [257]3 years ago
8 0

Answer and Explanation:

The DC motor has coils inside it which produces magnetic field inside the coil and due to thus magnetic field an emf is induced ,this induced emf is known as back emf. The back emf always acts against the applied voltage. It is represented by E_b

The back emf of the DC motor is given by E_b=\frac{NP\Phi }{60A}

Here N is speed of the motor ,P signifies the number of  poles ,Z signifies the the total number of conductor  and A is number of parallel paths

As from the relation we can see that back emf and speed ar dependent on each other it means back emf limits the speed of DC motor

You might be interested in
technician A says that in any circuit, electrical current takes the path of least resistance. technician B says that while this
ArbitrLikvidat [17]

Answer:

  technician A is correct

Explanation:

Technician B has circuit topologies confused. In a series circuit, there is only one path for electrical current to take. In a parallel circuit, the current will divide between paths in proportion to the inverse of their resistance. The least resistance path will have the most current.

Technician A is mostly correct.

3 0
3 years ago
A structural component in the shape of a flat plate 25.0 mm thick is to be fabricated from a metal alloy for which the yield str
balandron [24]

Answer:

The critical length of surface flaw = 6.176 mm

Explanation:

Given data-

Plane strain fracture toughness Kc = 29.6 MPa-m1/2

Yield Strength = 545 MPa

Design stress. =0.3 × yield strength

= 0.3 × 545

= 163.5 MPa

Dimensionless parameter. Y = 1.3

The critical length of surface flaw is given by

= 1/pi.(Plane strain fracture toughness /Dimensionless parameter× Design Stress)^2

Now putting values in above equation we get,

= 1/3.14( 29.6 / 1.3 × 163.5)^2

=6.176 × 10^-3 m

=6.176 mm

5 0
3 years ago
Read 2 more answers
4. Water vapor enters a turbine operating at steady state at 1000oF, 220 lbf/in2 , with a volumetric flow rate of 25 ft3/s, and
hodyreva [135]
Yes i is the time of the day you get to frost the moon and back and then you can come over and then go to hang out with me me and then go to hang out
6 0
4 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
A small metal particle passes downward through a fluid medium while being subjected to the attraction of a magnetic field such t
bekas [8.4K]

Answer:

a)Δs = 834 mm

b)V=1122 mm/s

a=450\ mm/s^2

Explanation:

Given that

s = 15t^3 - 3t\ mm

a)

When t= 2 s

s = 15t^3 - 3t\ mm

s = 15\times 2^3 - 3\times 2\ mm

s= 114 mm

At t= 4 s

s = 15t^3 - 3t\ mm

s = 15\times 4^3- 3\times 4\ mm

s= 948 mm

So the displacement between 2 s to 4 s

Δs = 948 - 114 mm

Δs = 834 mm

b)

We know that velocity V

V=\dfrac{ds}{dt}

\dfrac{ds}{dt}=45t^2-3

At t=  5 s

V=45t^2-3

V=45\times 5^2-3

V=1122 mm/s

We know that acceleration a

a=\dfrac{d^2s}{dt^2}

\dfrac{d^2s}{dt^2}=90t

a= 90 t

a = 90 x 5

a=450\ mm/s^2

4 0
3 years ago
Other questions:
  • We would like to measure the density (p) of an ideal gas. We know the ideal gas law provides p= , where P represents pressure, R
    15·1 answer
  • Verify the below velocity distribution describes a fluid in a state of pure rotation. What is the angular Velocity? (a)-Vx = -1/
    7·1 answer
  • A tank has two rooms separated by a membrane. Room A has 1 kg of air and a volume of 0.5 m3; room B has 0.75 m3 of air with dens
    15·1 answer
  • How may a Professional Engineer provide notice of licensure to clients?
    9·1 answer
  • Why it is important to prepare first the materials and tools carpentry before doing the tasks?​
    6·2 answers
  • Please help me with this. Picture
    10·1 answer
  • What is equation for surface area?
    9·1 answer
  • true or false: the types of building materials that’s should be used in a project does not constitute a conditional for projects
    13·2 answers
  • 12. What procedure should you follow when taking measurements?
    11·1 answer
  • Which of the following situations best describes student engaged in active learning
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!