Answer:
d = 0.793 g/L
Explanation:
Given data:
Density of fluorine gas = ?
Pressure of gas = 0.554 atm
Temperature of gas = 50 °C (50+273.15K = 323.15 K)
Solution:
Formula:
PM = dRT
M = molar mass of gas
P = pressure
R = general gas constant
T = temperature
d = PM/RT
d = 0.554 atm × 37.99 g/mol / 0.0821 atm.L /mol.K × 323.15 K
d = 21.05 atm.g/mol/26.53 atm.L /mol
d = 0.793 g/L
Answer:
height(h)=10 m
acceleration due to gravity (g)=10 m/s^2
mass (m)=?
potential energy=67
or,mgh= 67
or,m×10×10=67
or,m=67/100
or,m=0.67 kg
Therefore,m= 670 grams
Answer:
Mass = 0.32 g
Explanation:
Given data:
Mass of CH₄ = ?
Volume of CH₄ = 500 mL (500 mL× 1L/1000 mL= 0.5 L)
Temperature = 273 K
Pressure = 1 atm
Solution:
Volume of CH₄:
500 mL (500 mL× 1L/1000 mL= 0.5 L)
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm× 0.5 L = n×0.0821 atm.L/ mol.K × 273 K
0.5 atm.L = n×22.4 atm.L/ mol
n = 0.5 atm.L / 22.4 atm.L/ mol
n = 0.02 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 0.02 mol × 16 g/mol
Mass = 0.32 g
Answer:
Mass = 65.8 g
Explanation:
Given data:
Mass of sodium chloride = ?
Volume of solution = 1.5 L
Molarity of solution = 0.75 M
Solution:
Number of moles of sodium chloride:
Molarity = number of moles / volume in L
By putting values,
0.75 M = number of moles = 1.5 L
Number of moles = 0.75 M × 1.5 L
Number of moles = 1.125 mol
Mass of sodium chloride:
Mass = number of moles × molar mass
Mass = 1.125 mol × 58.5 g/mol
Mass = 65.8 g