Specific heat is the quantity of heat required to change the temperature of 1 gram of a substance by 1 degree Celsius. It is the amount per unit mass that is required to raise the temperature by one degree Celsius. Every substance has its own specific heat and each has its own distinct value. The units of specific heat are joules per gram-degree Celsius (J/f C) and sometimes J/Kg K may also be used.
The answer for this would be 69.6
Answer:
Option B. 3.0 M
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity can simply be defined as the mole of solute per unit litre of the solution. Mathematically, it can be expressed as:
Molarity = mole of solute /Volume of solution
With the above formula, we can obtain the molarity of the solution as follow:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity = mole of solute /Volume of solution
Molarity = 9 / 3
Molarity = 3 mol/L = 3.0 M
Thus, the molarity of the solution is 3 M
Answer: d
Explanation:
vmckvjdsvkdsjvdkslvjdskfvhfdvfkcn
Answer:
H2C2O4.2H20 → CO2 + CO + H2O
Explanation:
Oxalic acid crystals are nothing but dehydrated oxalic acid (H2C2O4 . 2H2O).
On heating, the water of crystallization is lost first. Then, the dehydrated oxalic acid decomposes into carbon dioxide(CO2), carbon monoxide(CO) and water(H2O).
Equations involved :
H2C2O4 . 2H2O → H2C2O4 + 2H2O
H2C2O4 → CO2 + HCOOH (FORMIC ACID)
HCOOH → CO + H2O
Overall equation : H2C2O4.2H20 → CO2 + CO + H2O