<h3>
Answer:</h3>
322.7 kW
<h3>
Explanation:</h3>
- Power refers to the rate at which work is done.
- Therefore; Power = Work done ÷ time
- It is measured in joules per seconds or Watts
In this case, we are required to convert 0.3227 MW to kilowatts
We need to know that;
- 10^6 watts = 1 Megawatts(MW)
- 10^3 Watts = 1 kilowatts (kW)
Therefore;
10^3 kW = 1 MW
Therefore, the suitable conversion factor is 10^3kW/MW
Hence;
0.3227 MW is equivalent to;
= 0.3227 MW × 10^3kW/MW
= 322.7 kW
Thus, the peak power output is 322.7 kW
Explanation:
Lithium diisopropylamide (LDA) is used in many organic synthesis and is a strong base. It is prepared by the acid base reaction of N,N-diisopropylamine ( [(CH₃)₂CH]₂NH ) and butyllithium ( Li⁺⁻CH₂CH₂CH₂CH₃ ).
The equation is show below as:
[(CH₃)₂CH]₂NH + Li⁺⁻CH₂CH₂CH₂CH₃ ⇒ [(CH₃)₂CH]₂N⁻Li⁺ + CH₃CH₂CH₂CH₃
N,N-diisopropylamine ( [(CH₃)₂CH]₂NH ) is a weaker acid and hence, LDA ( [(CH₃)₂CH]₂N⁻Li⁺ ) is stronger base. (Weaker acid has stronger conjugate base)
Butyllithium ( Li⁺⁻CH₂CH₂CH₂CH₃ ) is a very strong base and hence, butane ( CH₃CH₂CH₂CH₃ ) is a very weak acid. (Strong base has weaker conjugate acid)
Answer:
C3H7OH → C3H6 + H20
Explanation:
If we look at the reactant and the product we will realize that the reactant is an alcohol while the product is an alkene. The reaction involves acid catalysed elimination of water from an alcohol.
Water is a good leaving group, hence an important synthetic route to alkenes is the acid catalysed elimination of water from alcohols. Hence the conversion represented by C3H7OH → C3H6 + H20 is an elimination reaction in which water is the leaving group.
Its what the formula of a coupon between PB to plus plus to