Answer:
Solution A that will form a precipitate with Ksp = 2.3 x 10−4
Explanation:
Li₃PO₄ ⇄ 3 Li⁺(aq) + PO₄³⁻(aq)
3S S
Where S = Solubility(mole/lit) and Ksp = Solubility product
⇒ Ksp = (3S)³ x (S)
⇒ 27S⁴ = 2.3x10−4
⇒ S = 0.05 mol/lit
Concentration of Li₃PO₄ precipitate = 0.05
<u>Solution A </u>
0.500 lit of a 0.3 molar LiNO₃ contains 0.5 x 0.3 = 0.15 mole
0.4 lit of a 0.2 molar Na₃PO₄ contains = 3 x 0.4 x 0.2 = 0.24 mole
3 LiNO₃ + Na₃PO₄ → 3 NaNO₃ + Li₃PO₄
(Mole/Stoichiometry)

= 0.05 = 0.24
Since from (Mole/Stoichiometry) ratio we can conclude that LiNO₃ is limiting reagent.
So concentration of Li₃PO₄ is equal to 0.05.
Lol it literally says that he covered the distance in three seconds so I believe it would be three
Sugar, on the other hand, is composed of carbon, oxygen, and hydrogen and has covalent bonds. A salt molecule is made up of one sodium atom and one chlorine atom.
The heat transfer formula is;
Q = m * c * Δ T >>>> (1)
where, Q is the heat transfer
m = mass (gram)
c = the specific heat capacity (J/g)
Δ T = change in temperature
∵ we have one mole of Ethanol
∴ the weight of ethanol equals its molecular weight = (2*12)+(6*1)+(16) = 46 g
we will assume that the specific heat capacity of ethanol is 2.46 J/g (from google)
ΔT = 25 - 320 = - 295 C
By substitution in (1)
∴ Q = 2.46 * 46 * (-295) = - 33382.2 J
Answer:
silicon
Explanation:
Silicon. Silicon is often found in electronic devices, as well as the sand.
hope this helps UwU