Answer:
The value of
of the an ethylamine is
.
Explanation:
The pH of the solution = 12.067
The pOH of the solution = 14 - pH =14-12.607 =1.933
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
![1.933=-\log[OH^-]](https://tex.z-dn.net/?f=1.933%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=0.0117 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.0117%20M)

Initially
0.342 M 0 0
At equilibrium
(0.342-x) x x
The value of x = ![[OH^-]=0.0117 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.0117%20M)
The expression of
is given as:
![K_b=\frac{[C_2H_5NH_3^{+}][OH^-]}{[C_2H_5NH_2]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BC_2H_5NH_3%5E%7B%2B%7D%5D%5BOH%5E-%5D%7D%7B%5BC_2H_5NH_2%5D%7D)


The value of
of the an ethylamine is
.
Answer:
102g
Explanation:
To find the mass of ethanol formed, we first need to ensure that we have a balanced chemical equation. A balanced chemical equation is where the number of atoms of each element is the same on both sides of the equation (reactants and products). This is useful as only when a chemical equation is balanced, we can understand the relationship of the amount (moles) of reactant and products, or to put it simply, their relationship with one another.
In this case, the given equation is already balanced.

From the equation, the amount of ethanol produced is twice the amount of yeast present, or the same amount of carbon dioxide produced. Do note that amount refers to the number of moles here.
Mole= Mass ÷Mr
Mass= Mole ×Mr
<u>Method 1: using the </u><u>mass of glucose</u>
Mr of glucose
= 6(12) +12(1) +6(16)
= 180
Moles of glucose reacted
= 200 ÷180
=
mol
Amount of ethanol formed: moles of glucose reacted= 2: 1
Amount of ethanol
= 
=
mol
Mass of ethanol
= ![\frac{20}{9} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B9%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 
= 102 g (3 s.f.)
<u>Method 2: using </u><u>mass of carbon dioxide</u><u> produced</u>
Mole of carbon dioxide produced
= 97.7 ÷[12 +2(16)]
= 97.7 ÷44
=
mol
Moles of ethanol: moles of carbon dioxide= 1: 1
Moles of ethanol formed=
mol
Mass of ethanol formed
= ![\frac{977}{440} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B977%7D%7B440%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 102 g (3 s.f.)
Thus, 102 g of ethanol are formed.
Additional:
For a similar question on mass and mole ratio, do check out the following!
Answer: -
12.41 g
Explanation: -
Mass of CO₂ = 42 g
Molar mass of CO₂ = 12 x 1 + 16 x 2 = 44 g / mol
Number of moles of CO₂ = 
= 0.9545 mol
The balanced chemical equation for this process is
2C₆H₆ + 15O₂ → 12CO₂ + 6H₂O
From the balanced chemical equation we see
12 mol of CO₂ is produced from 2 mol of C₆H₆
0.9545 mol of CO₂ is produced from 
= 0.159 mol of C₆H₆
Molar mass of C₆H₆ = 12 x 6 + 1 x 6 =78 g /mol
Mass of C₆H₆ =Molar mass x Number of moles
= 78 g / mol x 0.159 mol
= 12.41 g
Answer: C.) SO2
Explanation: Sulfur Dioxide is the gaseous molecule which can show the resonance through lewis dot structure due to the presence of lone pairs of electrons present on all of the three atoms of the molecules. Moreover , Sulphur forms pie bond with the oxygen using p orbitals which forms a network of the conjugated system that help to elaborate the reason of the formation of the resonance structure.
Options (a), (b), and (d) cannot form resonating structures as they involve the formation of the chemical bonds through single sigma bond.