For multiple covalent bonds to form in molecules, the molecules must contain carbon nitrogen or oxygen.
<u>Explanation:</u>
- Think about carbon dioxide (CO2). If every oxygen atom imparts one electron to the carbon molecule, there will be 6 electrons in carbon particle and 7 electrons in every oxygen atom. This doesn't give the carbon atom as a total octet.
- Sometimes more than one set of electrons is shared between two atoms. In carbon dioxide, a second electron from every oxygen atom is likewise imparted with the central carbon atom, and the carbon particle imparts one more electron with every oxygen atom.
- Two sets of electrons shared between two atoms make a double bond between the atoms. A few particles contain triple bonds, covalent bonds in which three sets of electrons are shared by two atoms.
Grasslands are areas where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on earth and dominate the landscape worldwide.[1] They cover 31-43% of the Earth's land area. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands.[1]
Answer:
Both have the same amount of particles.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ particles.
This implies that 1 mole of Hydrogen contains 6.02×10²³ particles. Also, 1 mole of oxygen contains 6.02×10²³ particles.
Thus, 1 mole of Hydrogen and 1 mole of oxygen contains the same number of particles.
Ionic bond is a chemical bond formed by the complete transfer of electrons between two atoms. The atom that loses electrons gains a positive charge (cation) and that which accepts electrons gains a negative charge (anion). Now, electronegativity is a parameter that measures the tendency of an atom to accept electrons. In the context of ionic bonding, two elements which show a significant difference in their electronegativity values form ionic bonds.
In the given examples, the difference in electronegativity is greatest between K and Br i.e. 0.8 and 2.8 respectively with a difference of 2.0. This also makes sense since K and Br are on the extreme ends of the periodic table. Hence, potassium with a valence electron configuration of 4s1 will lose its s electron to Br (4s24p6) and form an ionic molecule K⁺Br⁻
Ans E) potassium and bromine
I don't get what you are saying... Can you reword it?