4x (2x - 6)
8x - 24x
= -16x
Answer:
The answer is
<h2>

</h2>
Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
To find the equation of the parallel line we must first find the slope of the original line
The original line is 3x + 5y = 11
We must first write the equation in the general equation above
So we have
5y = - 3x + 11
Divide both sides by 5
<h3>

</h3>
Comparing with the general equation above
Slope = - 3/5
Since the lines are parallel their slope are also the same
Slope of parallel line = - 3/5
So the equation of the line using point
(15, 4) and slope - 3/5 is
<h3>

</h3>
We have the final answer as
<h3>

</h3>
Hope this helps you
P- (-1,7) Q-(2,7) R-(7,-3) S-(-4,-4)
To use the equation we need a1 and d(the common difference).
We have a1 = 57, we need to find d.
93-84 = 9; 84-75=9; 75-66=9; 66-57=9
d = 9
a350 = 57 + (350-1)(9)
a350 = 57 + (349)(9)
a350 = 57 + 3141
a350 = 3198
![\begin{array}{rrrrr} 10x&-&18y&=&2\\ -5x&+&9y&=&-1 \end{array}~\hfill \implies ~\hfill \stackrel{\textit{second equation }\times 2}{ \begin{array}{rrrrr} 10x&-&18y&=&2\\ 2(-5x&+&9y&)=&2(-1) \end{array}} \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{rrrrr} 10x&-&18y&=&2\\ -10x&+&18y&=&-2\\\cline{1-5} 0&+&0&=&0 \end{array}\qquad \impliedby \textit{another way of saying \underline{infinite solutions}}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-5x%26%2B%269y%26%3D%26-1%20%5Cend%7Barray%7D~%5Chfill%20%5Cimplies%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bsecond%20equation%20%7D%5Ctimes%202%7D%7B%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%202%28-5x%26%2B%269y%26%29%3D%262%28-1%29%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-10x%26%2B%2618y%26%3D%26-2%5C%5C%5Ccline%7B1-5%7D%200%26%2B%260%26%3D%260%20%5Cend%7Barray%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Banother%20way%20of%20saying%20%5Cunderline%7Binfinite%20solutions%7D%7D)
if we were to solve both equations for "y", we'd get

notice, the 1st equation is really the 2nd in disguise, since both lines are just pancaked on top of each other, every point in the lines is a solution or an intersection, and since both go to infinity, well, there you have it.