In a particle accelerator a positron (C= +1.6 x 10-19) travels through a perpendicular magnet field with a magnitude
of 3.1 x 10-2 T. At what speed must the positron travel in order for it to experience a force of 4.75 x 10-14 N?
28. An alpha particle (2 protons and 2 neutrons) experiences a downward force of 2.9 x 10-14 N while traveling in a
magnetic field with a strength of 5.1 x 10-19 T pointing to the north. Find the speed of the particle and the direction
it must be traveling in.
29. Find the length of a wire if it experiences a .63N force when it travels through a magnetic field with a strength of
0.85T whilst carrying 5.0 amps of current.
30. A coil with 462 turns of wire, a total resistance of 36Ω , and a cross-sectional area of 0.25 m2
is positioned with its
plane perpendicular to the field of a powerful electromagnet. What average current is induced in the coil during the 0.37s
that the magnetic field drops from 3.1 T to 0.0 T?
31. A step-up transformer has a potential difference across the primary of 28 V and a potential difference across the
secondary of 3.0 × 104
V. There are 28 turns in the primary coil. How many turns are in the secondary?
32. A step-up transformer is used to create a potential difference of 1.6872 × 105
V across the secondary. The potentia
Answer:
If energy is conserved, then the sum of the potential energy and the kinetic energy is a constant.
Assuming the proton starts from rest, so it's kineitc energy is zero, but it has a potential energy, PE equal to:
PE = qV
where q =1.6 x 10^-19 C
and V = 1.00 V
Assuming the proton no longer experiences the potential energy and it is all converted to kinetic energy then:
PE* = 0,
KE* = 1/(2mv^2)
Now since
PE + KE = Total energy =PE* + KE*
Therefore,
qV + 0 = 0 + 1/2mv^2
Or
KE = qV = 1.6 10^-19 J
3. <span>The second piston will experience the same force as compared with the first. This is because since the </span>pressure is the same everywhere inside the fluid system,<span> the force is proportional to the surface area. We are told that both the first and the second piston have the same surface area, therefore, they will both experience the same force/pressure.
4. </span>The situation is much the same as number 3 above, with the exception that the second piston is twenty times larger than the first. Again, since the pressure is the same everywhere inside the fluid system, the force is proportional to the surface area. We are told that the second piston is 20 times larger than the first, therefore, the larger piston will experience 20 times larger the force of the small one.
6. The answer is TRUE. The <span>hydraulic </span>braking system<span> of most cars makes use of a vacuum servo (or booster), which is located between the </span>brake pedal<span> and the master cylinder piston. </span><span>This vacuum servo amplifies the force applied </span><span>from the </span>brake pedal<span>.</span>