Suspect and mounts are a solid frame. True.
Answer:
Part a)

Part B)
percentage increase is
%
Explanation:
Part a)
As we know that the beat frequency is

after increasing the tension the beat frequency is decreased and hence the tension in string B will increase
So we have


Part B)
percentage increase in the tension of the string will be given as


now we have

so we have


so we have

percentage increase is

Ill save you all the math steps, but here is the answer! <span>102.25m I took that physics exam 3 days ago! So if you need the steps just ask Ill insert them in!</span>
<span>The temperature of water will boil at one hundred degrees celsius when the external pressure is at 17.5 torr. Essentially, it is based off of the vaporizing of heat, as well as the gas constant. This is a matter of solving a physics equation and breaking down the factors that will affect the boiling point.</span>
The answer would be a speed