Answer:
Mandible.
Explanation:
The mandible in the bone that allows you to open and close your mouth, otherwise known ad the jawbone.
Answer:
Weight at the surface of Jupiter's moon Io is 8.13 N .
Explanation:
Given :
Acceleration due to gravity at the surface of Jupiter's moon is
.
Weight of watermelon in earth ,
.
Acceleration due to gravity at the surface of earth is
.
We know , weight is given by :

Therefore , mass at the surface of Jupiter's moon Io is :

Hence , this is the required solution .
Answer:
weightlessness, condition experienced while in free-fall, in which the effect of gravity is canceled by the inertial (e.g., centrifugal) force resulting from orbital flight. ... Excluding spaceflight, true weightlessness can be experienced only briefly, as in an airplane following a ballistic (i.e., parabolic) path.
Explanation:
Igneous - metamorphic - sedimentary
A rock cycle provides the cyclic transformation of one rock type to another in nature.
There are three main types of rock involved in the rock cycle;
- igneous rocks are derived from the cooling and solidification of molten magma
- metamorphic rocks are changed rocks subjected to intense pressure and temperature
- sedimentary rocks are derived from rock sediments that have been lithified.
The history of the rock in Monticello begins with igneous rock formation. Basalt is an igneous rock that forms from the cooling and solidification of molten magma. Under intense pressure and temperature regimes, they are changed to metamorphic rocks.
Agents of denudation such as wind, water and glacier weathers the rock and disintegrates it. They are then carried into basins where they are deposited. Here they form sedimentary rock.
The process still goes on as the sedimentary rock gets taken into depth, they can either melt to form igneous rock or be changed to metamorphic rocks.
learn more:
metamorphic process brainly.com/question/869769
sedimentary rocks brainly.com/question/9131992
#learnwithBrainly
Answer:
84.82N/C.
Explanation:
The x-components of the electric field cancel; therefore, we only care about the y-components.
The y-component of the differential electric field at the center is
.
Now, let us call
the charge per unit length, then we know that
;
therefore,


Integrating

![$E = \frac{k \lambda }{R}*[-cos(\pi )+cos(0) ]$](https://tex.z-dn.net/?f=%24E%20%3D%20%5Cfrac%7Bk%20%5Clambda%20%20%20%7D%7BR%7D%2A%5B-cos%28%5Cpi%20%29%2Bcos%280%29%20%5D%24)

Now, we know that


and the radius of the semicircle is

therefore,

