Answer:
Explanation:
Given
Initial linear speed 
initial angular velocity 
Speed after 4.1 s is 

using 
where
is angular acceleration

i.e. clockwise
(b)angular displacement




The magnetic field is holding onto the nail that’s all I got
12.... it helps to markout the location of ecah paddle on the wheel
The point with the greatest potential energy is B.
The potential energy of an object is depends on the relative distance between the object and the ground and its mass. The higher the object is from the ground the greater the potential energy posses.
Potential energy (P.E) = mgh
Where m is the mass, g is the gravity and h is the height from the ground to where the object is.
Since the mass and gravity is constant in this case, only the height will determine the point with the greatest P.E and that point is B.
Given
m1(mass of the first object): 55 Kg
m2 (mass of the second object): 55 Kg
v1 (velocity of the first object): 4.5 m/s
v2 (velocity of the second object): ?
m3(mass of the object dropped): 2.5 Kg
The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:
Pa= Pb
Where Pa is the momentum before collision and Pb is the momentum after collision.
Now applying this law for the above problem we get
Momentum before collision= momentum after collision.
Momentum before collision = (m1+m2) x v1 =(55+5)x 4.5 = 270 Kgm/s
Momentum after collision = (m1+m2+m3) x v2 =(55+5+2.5) x v2
Now we know that Momentum before collision= momentum after collision.
Hence we get
270 = 62.5 v2
v2 = 4.32 m/s