C.
Nuclear fission involves the high energy collision of two atomic nuclei to produce one larger nucleus; this process powers stars.
Circular lines on topographic map is called Contour lines these lines shown on two dimension map and depict elevation on the ground . the distance of each contour line is set to represent a certain level of elevation with zero being sea level . mostly map use distance between coutour lines is 10 m
Balanced chemical reaction happening here is:
3Mg(s) + N₂(g) → Mg₃N₂(s)
<u>moles of product formed from each reactant:</u>
2.0 mol of N2 (g) x <u> 1 mol Mg₃N₂ </u> = <u>2 mol Mg₃N₂</u>
1 mol N2
and
8.0 mol of Mg(s) x <u> 1 mol Mg₃N₂ </u> = 2.67 mol Mg₃N₂
3 mol Mg
Since N2 is giving the least amount of product(Mg₃N₂) ie. 2 mol Mg₃N₂
N2 is the limiting reactant here and Mg is excess reactant.
Hence mole of product formed here is 2 mol Mg₃N₂
molar mass of Mg₃N₂
= 3 Mg + 2 N
= 101g/mol
mass of product(Mg₃N₂) formed
= moles x Molar mass
= 2 x 101
= 202g Mg₃N₂
<u>202g of product are formed from 2.0 mol of N2(g) and 8.0 mol of Mg(s).</u>
<u> </u> The following are indicators of chemical changes:
Change in Temperature
Change in Color
Formation of a Precipitate
Answer:
Answers are in the explanation
Explanation:
Ksp of CdF₂ is:
CdF₂(s) ⇄ Cd²⁺(aq) + 2F⁻(aq)
Ksp = 6.44x10⁻³ = [Cd²⁺] [F⁻]²
When an excess of solid is present, the solution is saturated, the molarity of Cd²⁺ is X and F⁻ 2X:
6.44x10⁻³ = [X] [2X]²
6.44x10⁻³ = 4X³
X = 0.1172M
<h3>[F⁻] = 0.2344M</h3><h3 />
Ksp of LiF is:
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
Ksp = 1.84x10⁻³ = [Li⁺] [F⁻]
When an excess of solid is present, the solution is saturated, the molarity of Li⁺ and F⁻ is XX:
1.84x10⁻³ = [X] [X]
1.84x10⁻³ = X²
X = 0.0429
<h3>[F⁻] = 0.0429M</h3><h3 /><h3>The solution of CdF₂ has the higher fluoride ion concentration</h3>