Answer:
![[\psi]= [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
- This means that the integral of the square modulus over the space is dimensionless.
Explanation:
We know that the square modulus of the wavefunction integrated over a volume gives us the probability of finding the particle in that volume. So the result of the integral

must be dimensionless, as represents a probability.
As the differentials has units of length
for the integral to be dimensionless, the units of the square modulus of the wavefunction has to be:
![[\psi]^2 = [Length^{-3}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%5E2%20%3D%20%5BLength%5E%7B-3%7D%5D)
taking the square root this gives us :
![[\psi] = [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%20%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
Answer:
<u>A:cool fluid sinks</u>
<u>B:warm fluid rises</u>
<u>C:convection current</u>
Explanation:
Just took the assessment!!