To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

Where,
F = Force
r = Radius
Replacing we have that,



The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore


Finally, angular acceleration is a result of the expression of torque by inertia, therefore



PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians
, therefore



For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles
Answer- There are two reasons that we know quotations have been used first is the use of of name of the person who quoted it and secondly the quotation is written inside the quotation marks.
Explanation- Quotation is nothing but using a line that has been already quoted by someone somewhere. Such sentences are normally written inside quotation marks. In the above given paragraph the name of the person who quotes the sentence is also given hence we know that our quotation has been used.
Force bc it says the ability to make stuff happen
<h3>
Answer: 104.5 cubic cm</h3>
=======================================================
Work Shown:
r = radius = 1.045 cm
h = height = 30.48 cm
pi = 3.141 approximately
V = volume of cylinder
V = pi*r^2*h
V = 3.141*(1.045)^2*30.48
V = 104.547940002
V = 104.5 cubic cm