1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svlad2 [7]
3 years ago
7

Illustrates an Atwood's machine. Let the masses of blocks A and B be 7.00 kg and 3.00 kg , respectively, the moment of inertia o

f the wheel about its axis be 0.220 kg⋅m2, and the radius of the wheel be 0.120 m. There is no slipping between the cord and the surface of the wheel.
A) Find the magnitude of the linear acceleration of block AB) Find the magnitude of linear acceleration of block B.C) Find the magnitude of angular acceleration of the wheel C.D) Find the tension in left side of the cord.E) Find the tension in right side of the cord.

Physics
1 answer:
Harman [31]3 years ago
6 0

Answer:  

A) 1.55  

B) 1.55

C) 12.92

D) 34.08

E)  57.82

Explanation:  

The free body diagram attached, R is the radius of the wheel  

Block B is lighter than block A so block A will move upward while A downward with the same acceleration. Since no snipping will occur, the wheel rotates in clockwise direction.  

At the centre of the whee, torque due to B is given by  

{\tau _2} = - {T_{\rm{B}}}R  

Similarly, torque due to A is given by  

{\tau _1} = {T_{\rm{A}}}R  

The sum of torque at the pivot is given by  

\tau = {\tau _1} + {\tau _2}  

Replacing {\tau _1} and {\tau _2} by {T_{\rm{A}}}R and - {T_{\rm{B}}}R respectively yields  

\begin{array}{c}\\\tau = {T_{\rm{A}}}R - {T_{\rm{B}}}R\\\\ = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R\\\end{array}  

Substituting I\alpha for \tau in the equation \tau = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

I\alpha=\left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

The angular acceleration of the wheel is given by \alpha = \frac{a}{R}  

where a is the linear acceleration  

Substituting \frac{a}{R} for \alpha into equation  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right we obtain  

\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

Net force on block A is  

{F_{\rm{A}}} = {m_{\rm{A}}}g - {T_{\rm{A}}}  

Net force on block B is  

{F_{\rm{B}}} = {T_{\rm{B}}} - {m_{\rm{B}}}g  

Where g is acceleration due to gravity  

Substituting {m_{\rm{B}}}a and {m_{\rm{A}}}a for {F_{\rm{B}}} and {F_{\rm{A}}} respectively into equation \frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right and making a the subject we obtain  

\begin{array}{c}\\{m_{\rm{A}}}g - {m_{\rm{A}}}a - \left( {{m_{\rm{B}}}g + {m_{\rm{B}}}a} \right) = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g - \left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right)a = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)a = \left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g\\\\a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}\\\end{array}  

Since {m_{\rm{B}}} = 3kg and {m_{\rm{B}}} = 7kg  

g=9.81 and R=0.12m, I=0.22{\rm{ kg}} \cdot {{\rm{m}}^2}  

Substituting these we obtain  

a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}  

\begin{array}{c}\\a = \frac{{\left( {7{\rm{ kg}} - 3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2}} \right)}}{{\left( {7{\rm{ kg}} + 3{\rm{ kg}} + \frac{{0.22{\rm{ kg/}}{{\rm{m}}^2}}}{{{{\left( {0.120{\rm{ m}}} \right)}^2}}}} \right)}}\\\\ = 1.55235{\rm{ m/}}{{\rm{s}}^2}\\\end{array}

Therefore, the linear acceleration of block A is 1.55 {\rm{ m/}}{{\rm{s}}^2}

(B)

For block B

{a_{\rm{B}}} = {a_{\rm{A}}}

Therefore, the acceleration of both blocks A and B are same

1.55 {\rm{ m/}}{{\rm{s}}^2}

(C)

The angular acceleration is \alpha = \frac{a}{R}

\begin{array}{c}\\\alpha = \frac{{1.55{\rm{ m/}}{{\rm{s}}^2}}}{{0.120{\rm{ m}}}}\\\\ = 12.92{\rm{ rad/}}{{\rm{s}}^2}\\\end{array}

(D)

Tension on left side of cord is calculated using

\begin{array}{c}\\{T_{\rm{B}}} = {m_{\rm{B}}}g + {m_{\rm{B}}}a\\\\ = {m_{\rm{B}}}\left( {g + a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{B}}} = \left( {3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} + 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 34.08{\rm{ N}}\\\end{array}

(E)

Tension on right side of cord is calculated using

\begin{array}{c}\\{T_{\rm{A}}} = {m_{\rm{A}}}g - {m_{\rm{A}}}a\\\\ = {m_{\rm{A}}}\left( {g - a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{A}}} = \left( {7{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} – 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 57.82{\rm{ N}}\\\end{array}

You might be interested in
Which country or region is coal-rich and oil-poor?
zimovet [89]
THE ANSWER FOR UR QUESTION IS 

WHICH COUNTRY OR REGION IS COAL RICH AND OIL POOR
ANS:- UNITED STATES IS THE COUNTRY WHICH IS COAL RICH AND OIL POOR

HOPE THIS HELPS!!!

^_^ HAPPY TO HELP U ^_^







5 0
3 years ago
Ok ok ik ik this is not the answer but I think you need to hear this
leonid [27]

Answer

oh thanksssss i hope u have a great day

Explanation:

ur a really awesome person and i thank u for that

4 0
2 years ago
What do group 2 elements have in common
Leokris [45]
Although many characteristics are common<span> throughout the </span>group<span>, the heavier metals such as Ca, Sr, Ba, and Ra are almost as reactive as the </span>Group<span> 1 Alkali Metals. All the </span>elements<span> in </span>Group 2 have two<span> electrons in their valence shells, giving them an oxidation state of +</span><span>2.</span>
3 0
3 years ago
Which of the following correctly describes the importance of demonstrations to scientific investigation?
sergey [27]

Answer:

A- A demonstration shows how something works, often including models

Explanation:

A demonstration allows, through experimentation, to show how nature works and in that way can include the explanation of scientific theories that explain the set of observed facts, that is, it serves as a demonstration of the underlying scientific principles.

5 0
3 years ago
A spring of spring constant 25 N/m is hung vertically and a 0.300 kg mass is attached to one end, causing a displacement of the
Mamont248 [21]

Answer:k=1175

Explanation:thank  you for asking

3 0
3 years ago
Other questions:
  • A sample of 4.50 g of methane occupies 12.7 dm3 at 310 K. (a) Calculate the work done when the gas expands isothermally against
    10·1 answer
  • The Lamborghini Huracan has an initial acceleration of 0.75g. Its mass, with a driver, is 1510 kg.
    13·1 answer
  • a bus travels 4 km due north and 3 km due west going from bus station a to bus station b. the magnitude of the bus displacement
    7·1 answer
  • A thin plastic rod of length 2.5 m is rubbed all over with wool, and acquires a charge of 75 nC, distributed uniformly over its
    6·1 answer
  • Two planets orbit a far away star as shown. Is it possible that both planets experience the same gravitation force from the star
    11·1 answer
  • A condition that affects the ability to sleep or the quality of sleep is referred to as a __________.
    8·2 answers
  • Which clouds are often associated with thunder and lightning?
    13·1 answer
  • Which of these examples has the most kinetic energy?
    11·2 answers
  • A person is spinning an object around on a circular path on the end of a string of length 0.96 m. The object has a mass of 0.34
    10·1 answer
  • Can you solve the issue
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!