1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kaylis [27]
3 years ago
5

Hot coffee in a mug cools over time and the mug warms up. Which describes the energy in this system?

Physics
1 answer:
givi [52]3 years ago
3 0
Thermal energy from the coffee is transferred to the mug.
You might be interested in
What is the relationship between force, velocity, and mass?
marysya [2.9K]

Answer:

The slower the intended velocity, the closer the force expressed comes to equalling the linear inertia of the load (i.e. the amount of force needed to hold the weight motionless). From Equation 1, force is inversely proportional to time

3 0
2 years ago
Read 2 more answers
This is what occurs when matter transitions between solid, liquid and gas.
vodomira [7]

Answer:

The answer is Phase Change

Explanation:

4 0
3 years ago
Read 2 more answers
F all of the energy in a falling object's gravitational potential energy store is transferred to its kinetic energy store by the
stepladder [879]

Answer:

The options are not shown, so let's derive the relationship.

For an object that is at a height H above the ground, and is not moving, the potential energy will be:

U = m*g*H

where m is the mass of the object, and g is the gravitational acceleration.

Now, the kinetic energy of an object can be written as:

K = (1/2)*m*v^2

where v is the velocity.

Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.

Uinitial = Kfinal.

m*g*H = (1/2)*m*v^2

v^2 = 2*g*H

v = √(2*g*H)

So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.

5 0
3 years ago
a net force of 219 N is exterted on a rock. the rock has an acceleration of 3m/s^2 due to this force. what is the mass of the ro
Sonbull [250]

Answer:

<h2>73 kg</h2>

Explanation:

The mass of the object can be found by using the formula

m =  \frac{f}{a}  \\

f is the force

a is the acceleration

From the question we have

m =  \frac{219}{3}  \\

We have the final answer as

<h3>73 kg</h3>

Hope this helps you

6 0
3 years ago
Importance of simple machines pleasecgive answer in points​
oksian1 [2.3K]

Answer:

Explanation:

The inclined plane

An inclined plane consists of a sloping surface; it is used for raising heavy bodies. The plane offers a mechanical advantage in that the force required to move an object up the incline is less than the weight being raised (discounting friction). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.

The lever

A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.

The wedge

A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.

The wheel and axle

A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.

Its principle of operation is best explained by way of a device with a large gear and a small gear attached to the same shaft. The tendency of a force, F, applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or mechanical advantage, is equal to the ratio of the two forces (W:F) and also equal to the ratio of the radii of the two gears (R:r)

7 0
3 years ago
Other questions:
  • Which of the following is probably not a reason why society might initially reject a new scientific theory
    14·1 answer
  • From your understanding of the relationship between temperature and pressure, what temperature would boiling water attain in the
    14·2 answers
  • to get a flat uniform cylindrical satellite spinning at the correct rate, scientists fire 4 tangential rockets. suppose that the
    14·1 answer
  • Suppose a zero-resistance rod slides to the right on two zero-res a distance of 0.330 m. The rails are connected by a 16 2 resis
    8·2 answers
  • In order to be considered an ion, an atom must have a
    12·1 answer
  • How does an air mattress protect a stunt person landing on the ground after a stunt?
    6·1 answer
  • Why does compound pendulum have the identity of possessing two values of h corresponding to the same period of oscillation
    11·1 answer
  • Can Hockey players hold the puck with their open hand?
    5·1 answer
  • A particle travels in a circle of radius 14 m at a constant speed of 21 m/s. What is the magnitude of the acceleration (in m/s2)
    14·1 answer
  • Q|C A sinusoidal wave in a string is described by the wave function
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!