Answer:

Explanation:
Given data

To find
Magnitude of the net magnetic field B
Solution
The magnitude of the net magnetic field can be find as:

Answer:
the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Explanation:
Given that;
weight of vehicle = 4000 lbs
we know that 1 kg = 2.20462
so
m = 4000 / 2.20462 = 1814.37 kg
Initial velocity
= 60 mph = 26.8224 m/s
Final velocity
= 30 mph = 13.4112 m/s
now we determine change in kinetic energy
Δk =
m(
² -
² )
we substitute
Δk =
×1814.37( (26.8224)² - (13.4112)² )
Δk =
× 1814.37 × 539.5808
Δk = 489500 Joules
we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule
so
Δk = 489500 / 3.6 × 10⁶
Δk = 0.13597 ≈ 0.136 kWh
Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Answer:
hello your question lacks some data and required diagram
G = 77 GPa, т all = 80 MPa
answer : required diameter = 252.65 * 10-^3 m
Explanation:
Given data :
force ( P ) = 660 -N force
displacement = 15 mm
G = 77 GPa
т all = 80 MPa
i) Determine the required diameter of shaft BC
considering the vertical displacement ( looking at handle DC from free body diagram )
D' = 0.3 sin∅ , where D = 0.015
hence ∅ = 2.8659°
calculate the torque acting at angle ∅ of CD on the shaft BC
Torque = 660 * 0.3 cos∅
= 660 * 0.3 * cos 2.8659 = 198 * -0.9622 = 190.5156 N
hello attached is the remaining part of the solution
Answer:
7.22 × 10²⁹ kg
Explanation:
For the material to be in place, the gravitational force on the material must equal the centripetal force on the material.
So, F = gravitational force = GMm/R² where M = mass of neutron star, m = mass of object and R = radius of neutron star = 17 km
The centripetal force F' = mRω² where R = radius of neutron star and ω = angular speed of neutron star
So, since F = F'
GMm/R² = mRω²
GM = R³ω²
M = R³ω²/G
Since ω = 500 rev/s = 500 × 2π rad/s = 1000π rad/s = 3141.6 rad/s = 3.142 × 10³ rad/s and r = 17 km = 17 × 10³ m and G = universal gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg²
Substituting the values of the variables into M, we have
M = R³ω²/G
M = (17 × 10³ m)³(3.142 × 10³ rad/s)²/6.67 × 10⁻¹¹ Nm²/kg²
M = 4913 × 10⁹ m³ × 9.872 × 10⁶ rad²/s²/6.67 × 10⁻¹¹ Nm²/kg²
M = 48,501.942 × 10¹⁵ m³rad²/s² ÷ 6.67 × 10⁻¹¹ Nm²/kg²
M = 7217.66 × 10²⁶ kg
M = 7.21766 × 10²⁹ kg
M ≅ 7.22 × 10²⁹ kg