Luminosities
Thanks to this relationship between period and luminosity, a Cepheid provide a practical and accurate method to evaluate their absolute magnitude. Once this is known, it is possible to know the distance of the Cepheid, calculating the difference with respect to the apparent magnitude.
Answer:
n = c/v = (3.00 x 108 m/s)/(2.76 x 108 m/s) = 1.09. This does not equal any of the indices of refraction listed in the table.
When the body is at rest, its speed is zero, and the graph lies on the x-axis.
When the body is in uniform motion, the speed is constant, and the graph is a horizontal line, parallel to the x-axis and some distance above it.
It's impossible to tell, based on the given information, how these two parts of the
graph are connected. There must be some sloping (accelerated) portion of the graph
that joins the two sections, but it cannot be accounted for in either the statement
that the body is at rest or that it is in uniform motion, since acceleration ... that is,
any change of speed or direction ... is not 'uniform' motion'.
Answer:
180m
Explanation:
We can use the formula [ d = st ].
12 * 15 = 180m
Best of Luck!