1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
15

PLEASE HELP GIVING BRAINLIEST !!!!

Mathematics
1 answer:
Contact [7]3 years ago
6 0

Answer:

hi :):):):):):):):) don't ignore me T_T

Step-by-step explanation:

You might be interested in
3.84761 to 3 decimal place
yKpoI14uk [10]
The answer is 3.848.
3 0
2 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
Factor each expression 36abc +54ad
olya-2409 [2.1K]

Answer:

18a(2bc + 3d)

Step-by-step explanation:

36abc + 54ad

Step 1: Find the Highest Common Factor of each

36abc = 2×2×3×3×a×b×c = 18a × 2bc

54ad = 2×3×3×3×a×d = 18a × 3d

HCF = 2×3×3×a = 18a

Step 2: Factor out with HCF

18a(2bc + 3d)

7 0
4 years ago
A machine can produce 6yards of fabric in 2 minutes. How much fabric can the machine produce in 1 hour?
Alex17521 [72]

Answer:

180

Step-by-step explanation:

2 times 30 equals 60 which is an hour so 6 times 30 equals 180.

5 0
3 years ago
Read 2 more answers
Find the radius of the circle whose equation is x^2 + y^2 = 4.
KATRIN_1 [288]

Answer:

Radius of the given circle is r = 2.

Step-by-step explanation:

Given equation of the circle is x^2 + y^2 = 4.

Now we need to find the radius of the given circle x^2 + y^2 = 4.

To find that let's compare with the formula of the circle with is x^2 + y^2 = r^2, where r is the radius.

We get r^2 = 4

take square root of both sides.

r=2

Hence radius of the given circle is r = 2.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A town's population has been growing linearly. in 2003 the population was 70,000. the population has been growing by 2700 people
    12·1 answer
  • Please help, multiple choice question
    14·1 answer
  • X+y= -6 ?<br> A(y=3x -1 B(y=-x+3 C( y=-x- 6 D(y =-6x -1
    13·1 answer
  • Please Help Me With This!! I'd Appreciate It So Much!!
    15·2 answers
  • 142 cases. If the daily growth rate is 6.4%, how many days will it take for the number of cases to double
    11·1 answer
  • 17) Suppose you will perform a test to determine whether there is sufficient evidence to support a
    5·1 answer
  • Please help ! i really need it
    15·1 answer
  • please help me its 3 am and i am so tired that i have no energy left and im seriously trying to get done with 8 assignments and
    12·2 answers
  • if it takes 10 minutes for 15 machines to make 5 widgets, how many minutes would it take 5 machines to make 15 widgets
    14·1 answer
  • Which of the numbers below are whole numbers? Check all that apply.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!