Microwave ovens use microwave radiation to heat food. the microwaves are absorbed by the water molecules in the food, which is t
ransferred to other components of the food. as the water becomes hotter, so does the food. part a suppose that the microwave radiation has a wavelength of 11.2 cm . how many photons are required to heat 225 ml of coffee from 25.0 ∘c to 62.0 ∘c? assume that the coffee has the same density, 0.997 g/ml , and specific heat capacity, 4.184 j/(g⋅k) , as water over this temperature range.
<span>step 1: energy required to heat coffee
E = m Cp dT
E = energy to heat coffee
m = mass coffee = 225 mL x (0.997 g / mL) = 224g
Cp = heat capacity of coffee = 4.184 J / gK
dT = change in temp of coffee = 62.0 - 25.0 C = 37.0 C
E = (224 g) x (4.184 J / gK) x (37.0 C) = 3.46x10^4 J
step2: find energy of a single photon of the radiation
E = hc / λ
E = energy of the photon
h = planck's constant = 6.626x10^-34 J s
c = speed of light = 3.00x10^8 m/s
λ = wavelength = 11.2 cm = 11.2 cm x (1m / 100 cm) = 0.112 m
E = (6.626x10^-34 J s) x (3.00x10^8 m/s) / (0.112 m) = 1.77x10^-16 J
step3: Number of photons
3.46x10^4 J x ( 1 photon / 1.77x10^-16 J) = 1.95x10^20 photons</span>
Will the waves bounce off each other upon meeting or will the two waves pass through each water? Waves interference occurs when two waves meet while traveling along the same medium
According to the question, as the person jumps the stairs up, there is an increase in the potential energy of the person which is provided by the work done in climbing the stairs and is given by: