The bicyclist accelerates with magnitude <em>a</em> such that
25.0 m = 1/2 <em>a</em> (4.90 s)²
Solve for <em>a</em> :
<em>a</em> = (25.0 m) / (1/2 (4.90 s)²) ≈ 2.08 m/s²
Then her final speed is <em>v</em> such that
<em>v</em> ² - 0² = 2<em>a</em> (25.0 m)
Solve for <em>v</em> :
<em>v</em> = √(2 (2.08 m/s²) / (25.0 m)) ≈ 10.2 m/s
Convert to mph. If you know that 1 m ≈ 3.28 ft, then
(10.2 m/s) • (3.28 ft/m) • (1/5280 mi/ft) • (3600 s/h) ≈ 22.8 mi/h
Answer:
wavelenght
Explanation:
The wavelength is the spatial period of a wave, analogous to the temporal period, it is the distance between two consecutive points with maximum amplitude that are repeated in space . In the waves of the sea, the wavelength is easily observed in the separation between two consecutive ridges.
Answer:
Yes
Explanation:
If lamp A burnt out there would still be a wire above it that connects lamp B and C to the power source
No, there isn't. Please consult your doctor if this is the case with yours or someone you know.