The statement "Good locations for turbines are limited" describes a drawback to wind energy.
Answer: Option B
<u>Explanation:</u>
Wind energy is one of the most useful and efficient renewable energy sources. But nothing is ideal in this universe and the same thing applies for wind energy also. The generation of electricity from wind energy requires setting up of turbines.
And these turbines can be set up in plane areas which is free from any disturbance except wind flow. In open area and flat plane surface only the turbines can rotate freely with the effect of wind.
But regions where the wind flow is minimum due to snow formation like the northern region of earth, the turbines cannot be set up there. So the locations for setting up of turbines are limited for good outcome in wind energy. This is one of the drawback of wind energy.
4200000 is your answer hope this helps
Answer:
The anomalous expansion of water is an abnormal property of water whereby it expands instead of contracting when the temperature goes from 4o C to 0o C, and it becomes less dense. The density is maximum at 4 degree centigrade and decreases below that temperature as shown in graph.
Explanation:do you want me to explain it more??
The height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
<h3>Pressure and temperature at equilibrium </h3>
The relationship between pressure and temperature can be used to determine the height risen by the water.

where;
- V₁ = AL
- V₂ = A(L - y)
- P₁ = Pa
- P₂ = Pa + ρgh
- T₁ = 20⁰C = 293 K
- T₂ = 10⁰ C = 283 k

Thus, the height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
The complete question is below:
A diving bell is a 4.2 m -tall cylinder closed at the upper end but open at the lower end. The temperature of the air in the bell is 20 °C. The bell is lowered into the ocean until its lower end is 100 m deep. The temperature at that depth is 10°C. How high does the water rise in the bell after enough time has passed for the air to reach thermal equilibrium?
Learn more about thermal equilibrium here: brainly.com/question/9459470
#SPJ4
Answer:
no not always sometimes they react at all so false I hope I helped :)