Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)
In 2Cr2O7 there’s 2 items; Cr and O
Still go straight but would obviously go up in speed!!
Hope this helps plz mark as brainlist and 5 star
B. At the equator
Explanation:
The energy coming from the Sun hits the Earth's surface at different angles, depending on the latitude of the place. The more perpendicular the ray of lights hit the surface, the more the energy transmitted to the Earth's surface, the warmer the location.
The angle at which the ray of lights hit the Earth is related to the latitude: in particular, the ray of lights arrive perpendicular at the equator (
), they arrive at larger angle in the United States (which is located at intermediate latitudes) and they arrive at the largest angles at the poles. For this reason, the sun's most energy is concentrated at the equator.