Answer:
0.725 moles
Explanation:
Use the mole = mass/mr equation to find the moles.
Mole = 14.5/20 (Neon's Mr) = 0.725 Moles
(1) The quantity of heat required to melt 175 g Cu is 35.88 kJ.
(2) The substance that releases 21.2 kJ of energy when 1.42 mol of it freezes is iron.
<h3>
What is heat of fusion?</h3>
Heat of fusion is the energy required to melt 1 mole of a substance.
<h3>What is heat of vaporization?</h3>
The heat energy required to vaporize 1 mole of a substance has been heat of vaporization.
Heat of fusion of copper (Cu) is given as 13 kJ/mol
Number of moles of 175 g of copper = 175/63.5 = 2.76 moles
Q = nΔH
Q = 2.76 mol x 13 kJ/mol = 35.88 kJ
Thus, the quantity of heat required to melt 175 g Cu is 35.88 kJ.
<h3>Heat of fusion of the substance</h3>
ΔH(fus) = Q/n
where;
- n is number of moles
- Q is quantity of heat released
ΔH(fus) = 21.2 kJ / 1.42 mol
ΔH(fus) = 14.93 kJ/mol
From the table the substance with latent heat of fusion of 14.9 kJ/mol is iron.
Thus, the substance that releases 21.2 kJ of energy when 1.42 mol of it freezes is iron.
Learn more heat of fusion here: brainly.com/question/87248
#SPJ1
Answer:
yes its correct, temperature is a measure of energy particles have, the more energy the faster they move and the higher the temp
Explanation:
While metallic bonds have the strong electrostatic force of attractions between the cation or atoms and the delocalized electrons in the geometrical arrangement of the two metals. ... Metallic bonds are malleable and ductile, while covalent bonds and ionic bonds non-malleable and non-ductile.
It well be 9025 because it will dissolve in 0.8 hcl soluiton