Half-life refers to the time taken for half of the atoms in a radioactive substance to decay. Therefore in 1 half-life the 80 mg of substance will reduce to 40 mg. In another half-life it will reduce from 40 mg to 20 mg, then in a third half-life from 20 mg to 10 mg. Therefore the half-life is equal to the total time taken to decay from 80 mg to 10 mg divided by 3:
t(1/2) = 36 hours / 3 = 12 hours.
Answer:
The standard enthalpy of formation of HgO is -90.7 kJ/mol.
Explanation:
The reaction between Hg and oxygen is as follows.

From the given,
Molar mass of HgO = 216.59 g/mol
Mass of HgO decomposed = 18.5 g
Amount of heat absorbed = 7.75 kJ
From the reaction,
The standard enthalpy of formation = 
During the decomposition of 1 mol of HgO , 90.7 kJ of energy absorbed.
For the formation of 1 mol of HgO , 90.7 kJ of energy is release
Therefore, the enthalpy of formation of mercury(II)Oxide is -90.7 kJ/mol
In order to find the number of moles with a given mass of Helium, we need to use its molar mass, which is 4.0026g/mol, therefore we will have:
4.0026g = 1 mol of Helium
91.5g = x moles of Helium
x = 22.86 moles of Helium in 91.5 grams
Answer:
Ionic bond
Explanation:
The magnesium atom gives up 2 electrons to form a magnesium ion, Mg2+ . The two electrons are transferred to fluorine atoms to form two fluoride ions, F–.
It's a weak base bacause H C N is weak