According to this formula:
(P1V1) / T1 = (P2V2) / T2
convert T from C° to Kelvin:
T1 = 83 + 273 = 356 K
T2= 96 + 273 = 369 K
convert P from torr to atm:
1 torr = 0.00131578947 atm<span>
p1 = 0.839474 atm
P2 = 1.415789 atm
By substitution in the previous formula:
(0.839474 x 10.6 ) / (356) = ( 1.415789 x V2 ) / 369
So:
V2 = 6.5 L</span>
Answer: Potential energy is converted to kinetic energy and back again.
Explanation:At points 1 and 3, the pendulum stops moving, and its mechanical energy is purely potential. At point 2, the pendulum is moving the fastest, and its mechanical energy is purely kinetic. Therefore, as the pendulum moves from point 1 to point 3, its potential energy is first converted to kinetic energy, then back to potential.
<h3>
Answer:</h3>
2.51 mol Cu
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
1.51 × 10²⁴ atoms Cu
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
2.50747 mol Cu ≈ 2.51 mol Cu
Answer:
2
Explanation:
The coefficient for O is 2 and this is an example of a combustion reaction. With the help of the coefficient 2 infront of oxygen, this equation now demonstrates law of conservation of mass.
Answer:The product and reactants reach a final, unchanging level.