Answer:
The speed of light is the speed at which light travels. No, an object cannot move at the speed of light.
Explanation:
The speed of light is 186,000 miles per second. An object with mass cannot move at the speed of light since it would take an infinite amount of energy to achieve that velocity, since only massless particles can travel at the speed of light. Also, you would have to factor in air friction, meaning even if an object were to reach such high speeds, it would instantly disintegrate.
Answer:
116 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of calcium = 2.9 moles
Mass of calcium =.?
The mole and mass of a substance are related according to the following formula:
Mole = mass / molar mass
With the above formula, we can obtain the mass of calcium. This can be obtained as follow:
Number of mole of calcium = 2.9 moles
Molar mass of calcium = 40 g/mol
Mass of calcium =.?
Mole = mass / molar mass
2.9 = mass of calcium / 40
Cross multiply
Mass of calcium = 2.9 × 40
Mass of calcium = 116 g
Therefore, the mass of 2.9 moles of calcium is 116 g.
The average atomic mass of element X is 14.007 u.
The average atomic mass of X is the <em>weighted average</em> of the atomic masses of its isotopes.
We multiply the atomic mass of each isotope by a number representing its <em>relative importance</em> (i.e., its % abundance).
Thus,
0.996 36 × 14.003 u =13.952 03 u
0.003 64 × 15.000 u = <u>0.054 60 u</u>
__________TOTAL = 14.007 u
Answer:
option X^2- as member of group 2A are non metal
The order of increasing C-OC−O bond length is:
a < c < b < e < d
a < c < b < e < d
Therefore, the order of increasing bond strength is:
d < e < b < c < a
d< e < b < c < a
<h3>What is bond length?</h3>
The distance between the centers of two atoms that are covalently connected is known as the bond length. The number of bound electrons determines the bond's length (the bond order). The greater the attraction between the two atoms and the shorter the bond length are, the higher the bond order.
The average distance between the nuclei of two bound atoms in a molecule is referred to as bond length or bond distance in molecular geometry. It is a transferrable characteristic of a bond between atoms of fixed kinds that is comparatively independent from the other components of the molecule.
Bond length and bond order are related; the shorter the bond is when more electrons are involved in its production.
To learn more about bond length from the given link:
brainly.com/question/28225709
#SPJ4