Answer:
See explanation
Explanation:
In this case, we have to remember that if we want to remove water from the reaction vessel we have to heat the vessel. So, we can convert the liquid water into <u>gas water</u> and we can remove it from the vessel. In this case, the products of dehydration for both molecules are <u>(E)-4-methylpent-2-ene</u> and <u>cyclohexene</u> with boiling points of <u>59.2 ºC</u> and <u>89 ºC</u> respectively. The boiling point of water is <u>100 ºC</u>, therefore if we heat the vessel the products and water would leave the system, and the products would be lost.
See figure 1
I hope it helps!
The factor that is generally responsible for higher melting point is intermolecular forces. The compounds that are covalent in nature are made of molecules rather than ions. It has been seen that some of the covalent compounds have polar molecules at one end, due to which the one end has more electronegative force than the other. The electrostatic force that is bounding the compound is the main cause of higher melting point of this compound. So it is true that with the increase of polarity of a compound creates higher melting point. .. hope I helped
From the information given, the total volume of rubbing alcohol is 88.2 ml
68.6 % of this volume is isopropanol.
We will assume 88.2 ml represents 100% volume, so the volume of water will be 31.4 %
The volume of isopropanol is
68.6/100 x 88.2 → 0.686 × 88.2 = 60.505 ml
The volume of isopropanol is 60.5 ml.
Volume of water will be 88.20 - 60.5 = 27.7 ml
(27.7 / 88.2 × 100 = 31.4% )
Adding 60.5 ml of isopropanol to 27.7 ml of water to make up 88.2 ml will give 68.6 % v/v isopropanol to water solution.
A theory is a proposed explanation for an observation