Thank you for posting your question here brainly. Based on the problem mentioned above the largest mass that water molecule could have using other isotopes is <span>24 amu. Below is the solution, I hope the answers helps.
</span><span>T2_18O = 24</span>
Avogadro's law states that in a mole of any substance, there are
atoms. This means that in the given sample, there are

- The atomic mass of sulfur is 32.06 amu.
- The atomic mass of oxygen is 15.9994 amu.
So, the atomic mass of sulfur dioxide is

Therefore, the mass is:

The reaction between boron sulfide and carbon is given as:
2B2S3 + 3C → 4B + 3CS2
As per the law of conservation of mass, for any chemical reaction the total mass of reactants must be equal to the total mass of the products.
Given data:
Mass of C = 2.1 * 10^ 4 g
Mass of B = 3.11*10^4 g
Mass of CS2 = 1.47*10^5
Mass of B2S3 = ?
Now based on the law of conservation of mass:
Mass of B2S3 + mass C = mass of B + mass of CS2
Mass of B2S3 + 2.1 * 10^ 4 = 3.11*10^4 + 1.47*10^5
Mass of B2S3 = 15.7 * 10^4 g
Answer:
FADH2 is a reducing agent.
FAD is an oxidizing agent.
Explanation:
The full form of FAD is flavin adenine dinucleotide. It is mainly a redox-active coenzyme which is associated with the different proteins and is involved with the enzymatic reactions in the metabolism.
FAD is obtained by donating or accepting electrons.
In the citric acid cycle,
succinate + FAD → fumarate + 
Thus we see that FAD is an oxidizing agent while
is a reducing agent.
Answer:
Mason notices that his boat sinks lower into the water in a freshwater lake than in the ocean. What could explain this?
Explanation:
The freshwater has less density then the ocean!